基于QC-LDPC编码的循环移位网络的FPGA实现

2024-01-28 21:44

本文主要是介绍基于QC-LDPC编码的循环移位网络的FPGA实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、桶式移位寄存器(barrel shifter) 

        八位桶式移位寄存器的VHDL实现如下,由于每一层结构相似,于是采用生成语句for_generate实现,使用该代码实现的RTL级分析和理论的结构一致,仿真结果也符合预期。 

entity barrel_shift isGENERIC(DATA_WIDTH:   INTEGER:=8;CTRL_WIDTH:   INTEGER:=3);Port (DATA_IN:    IN  STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);CTRL:       IN  STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);DATA_OUT:   OUT STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0));
end barrel_shift;architecture Behavioral of barrel_shift is
SIGNAL LAYER_1_TEMP:    STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);
SIGNAL LAYER_2_TEMP:    STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);
SIGNAL LAYER_3_TEMP:    STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);
beginLAYER_1:FOR I IN 0 TO 7 GENERATEG1:IF I<=3 GENERATELAYER_1_TEMP(I)<=DATA_IN(I)WHEN CTRL(2)='0'ELSE DATA_IN(I+4);END GENERATE G1;G2:IF I>3 GENERATE                                              LAYER_1_TEMP(I)<=DATA_IN(I)WHEN CTRL(2)='0'ELSE DATA_IN(I-4);END GENERATE G2;                                                 END GENERATE LAYER_1;LAYER_2:FOR I IN 0 TO 7 GENERATEG3:IF I<=5 GENERATELAYER_2_TEMP(I)<=LAYER_1_TEMP(I)WHEN CTRL(1)='0'ELSE LAYER_1_TEMP(I+2);END GENERATE G3;G4:IF I>5 GENERATE                                              LAYER_2_TEMP(I)<=LAYER_1_TEMP(I)WHEN CTRL(1)='0'ELSE LAYER_1_TEMP(I-6);END GENERATE G4;                                                 END GENERATE LAYER_2;LAYER_3:FOR I IN 0 TO 7 GENERATEG5:IF I<=6 GENERATELAYER_3_TEMP(I)<=LAYER_2_TEMP(I)WHEN CTRL(0)='0'ELSE LAYER_2_TEMP(I+1);END GENERATE G5;G6:IF I>6 GENERATE                                              LAYER_3_TEMP(I)<=LAYER_2_TEMP(I)WHEN CTRL(0)='0'ELSE LAYER_2_TEMP(I-7);END GENERATE G6;                               END GENERATE LAYER_3;    DATA_OUT<=LAYER_3_TEMP;end Behavioral;

二、QSN网络

 2.1LSN网络

        该网络的VHDL代码和RTL分析如下 

entity LSN_9x8_network isGENERIC(DATA_WIDTH:   INTEGER:=9;CTRL_WIDTH:   INTEGER:=4);Port (DATA_IN:    IN  STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);LSN_CTRL:   IN  STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);DATA_OUT:   OUT STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0));
end LSN_9x8_network;architecture Behavioral of LSN_9x8_network is
SIGNAL LAYER_1_TEMP:    STD_LOGIC_VECTOR(DATA_WIDTH-9 DOWNTO 0);
SIGNAL LAYER_2_TEMP:    STD_LOGIC_VECTOR(DATA_WIDTH-5 DOWNTO 0);
SIGNAL LAYER_3_TEMP:    STD_LOGIC_VECTOR(DATA_WIDTH-3 DOWNTO 0);
SIGNAL LAYER_4_TEMP:    STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0);
beginLAYER_1:FOR I IN 0 TO 0 GENERATEG1:IF I=0 GENERATELAYER_1_TEMP(I)<=DATA_IN(I)WHEN LSN_CTRL(3)='0'ELSE DATA_IN(I+8);END GENERATE G1;                                       END GENERATE LAYER_1;LAYER_2:FOR I IN 0 TO 4 GENERATE--5G2:IF I=0 GENERATELAYER_2_TEMP(I)<=LAYER_1_TEMP(I)WHEN LSN_CTRL(2)='0'ELSE DATA_IN(I+4);END GENERATE G2; G3:IF I>0 GENERATELAYER_2_TEMP(I)<=DATA_IN(I)     WHEN LSN_CTRL(2)='0'ELSE DATA_IN(I+4);END GENERATE G3;                                               END GENERATE LAYER_2;LAYER_3:FOR I IN 0 TO 6 GENERATE--7G4:IF I<=2 GENERATELAYER_3_TEMP(I)<=LAYER_2_TEMP(I)WHEN LSN_CTRL(1)='0'ELSE LAYER_2_TEMP(I+2);END GENERATE G4; G5:IF I>2 AND I<=4 GENERATELAYER_3_TEMP(I)<=LAYER_2_TEMP(I)WHEN LSN_CTRL(1)='0'ELSE DATA_IN(I+2);END GENERATE G5;G6:IF I>4 GENERATELAYER_3_TEMP(I)<=DATA_IN(I)     WHEN LSN_CTRL(0)='0'ELSE DATA_IN(I+2);END GENERATE G6;                 END GENERATE LAYER_3;    LAYER_4:FOR I IN 0 TO 7 GENERATE---8G7:IF I<=5 GENERATELAYER_4_TEMP(I)<=LAYER_3_TEMP(I)WHEN LSN_CTRL(0)='0'ELSE LAYER_3_TEMP(I+1);END GENERATE G7; G8:IF I=6 GENERATELAYER_4_TEMP(I)<=LAYER_3_TEMP(I)WHEN LSN_CTRL(0)='0'ELSE DATA_IN(I+1);END GENERATE G8;G9:IF I>6 GENERATELAYER_4_TEMP(I)<=DATA_IN(I)     WHEN LSN_CTRL(0)='0'ELSE DATA_IN(I+1);END GENERATE G9;                         END GENERATE LAYER_4; DATA_OUT<=LAYER_4_TEMP(DATA_WIDTH-2 DOWNTO 0);end Behavioral;

 2.2RSN网络 

 9x9的右移网络的VHDL实现和RTL分析如下

entity RSN_9x9_network isGENERIC(DATA_WIDTH:   INTEGER:=9;CTRL_WIDTH:   INTEGER:=4);Port (DATA_IN:    IN  STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);RSN_CTRL:   IN  STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);DATA_OUT:   OUT STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0));
end RSN_9x9_network;architecture Behavioral of RSN_9x9_network isCOMPONENT LSN_9x8_network ISGENERIC(DATA_WIDTH:   INTEGER:=9;CTRL_WIDTH:   INTEGER:=4);Port (DATA_IN:    IN  STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);LSN_CTRL:   IN  STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);DATA_OUT:   OUT STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0));END COMPONENT;
beginLSN_9X8:LSN_9x8_networkGENERIC MAP(DATA_WIDTH  =>  DATA_WIDTH,CTRL_WIDTH  =>  CTRL_WIDTH)PORT MAP(   DATA_IN(0)  =>  DATA_IN(8),DATA_IN(1)  =>  DATA_IN(7),DATA_IN(2)  =>  DATA_IN(6),DATA_IN(3)  =>  DATA_IN(5),DATA_IN(4)  =>  DATA_IN(4),DATA_IN(5)  =>  DATA_IN(3),DATA_IN(6)  =>  DATA_IN(2),DATA_IN(7)  =>  DATA_IN(1), DATA_IN(8)  =>  DATA_IN(0),   LSN_CTRL    =>  RSN_CTRL,DATA_OUT(0) =>  DATA_OUT(8),DATA_OUT(1) =>  DATA_OUT(7),DATA_OUT(2) =>  DATA_OUT(6),DATA_OUT(3) =>  DATA_OUT(5),DATA_OUT(4) =>  DATA_OUT(4),DATA_OUT(5) =>  DATA_OUT(3),DATA_OUT(6) =>  DATA_OUT(2),DATA_OUT(7) =>  DATA_OUT(1));              DATA_OUT(0) <=  DATA_IN(0);
end Behavioral;

  2.3MN网络

entity MN_9x9_network isGENERIC(DATA_WIDTH:   INTEGER:=9);Port (LSN_DATA_IN:    IN  STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0);RSN_DATA_IN:    IN  STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);M_CTRL:         IN  STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0);DATA_OUT:       OUT STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0));
end MN_9x9_network;architecture Behavioral of MN_9x9_network is
beginG1:FOR I IN 0 TO DATA_WIDTH-2 GENERATEDATA_OUT(I)<=RSN_DATA_IN(I) WHEN M_CTRL(I)='0' ELSE LSN_DATA_IN(I);END GENERATE G1;DATA_OUT(8)<='0' WHEN FALSE ELSE RSN_DATA_IN(8);
end Behavioral;

 2.4控制模块 

 控制模块的VHDL实现和仿真波形图如下

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;entity CTRL isGENERIC(DATA_WIDTH:   INTEGER:=9;CTRL_WIDTH:   INTEGER:=4);Port (CLK:        IN  STD_LOGIC;RST_N:      IN  STD_LOGIC;EN:         IN  STD_LOGIC;SHIFT_NUM:  IN  STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);M:          OUT STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0);LSN_SHIFT:  OUT STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);RSN_SHIFT:  OUT STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0); VALID:      OUT STD_LOGIC  );
end CTRL;architecture Behavioral of CTRL isbeginLSN_SHIFT_GE:PROCESS(CLK,RST_N)BEGINIF RST_N='0'THENLSN_SHIFT<=(OTHERS=>'0');ELSIF RISING_EDGE(CLK) THENIF EN='1'THENLSN_SHIFT<=SHIFT_NUM;END IF;END IF;END PROCESS;RSN_SHIFT_GE:PROCESS(CLK,RST_N)BEGINIF RST_N='0'THENRSN_SHIFT<=(OTHERS=>'0');ELSIF RISING_EDGE(CLK) THENIF EN='1'THENRSN_SHIFT<=9-SHIFT_NUM;END IF;END IF;END PROCESS;M_GE:PROCESS(CLK,RST_N)BEGINIF RST_N='0'THENM<=(OTHERS=>'0');ELSIF RISING_EDGE(CLK) THENIF EN='1'THENIF SHIFT_NUM>=9 THEN M(0)<='0';ELSE M(0)<='1';END IF;IF SHIFT_NUM>=8 THEN M(1)<='0';ELSE M(1)<='1';END IF;IF SHIFT_NUM>=7 THEN M(2)<='0';ELSE M(2)<='1';END IF;IF SHIFT_NUM>=6 THEN M(3)<='0';ELSE M(3)<='1';END IF;IF SHIFT_NUM>=5 THEN M(4)<='0';ELSE M(4)<='1';END IF;IF SHIFT_NUM>=4 THEN M(5)<='0';ELSE M(5)<='1';END IF;IF SHIFT_NUM>=3 THEN M(6)<='0';ELSE M(6)<='1';END IF;IF SHIFT_NUM>=2 THEN M(7)<='0';ELSE M(7)<='1';END IF;END IF;END IF;END PROCESS;VALID_GE:PROCESS(CLK,RST_N)BEGINIF RST_N='0'THEN                 VALID<='0';            ELSIF RISING_EDGE(CLK) THEN      IF EN='1'THENVALID<='1';       ELSEVALID<='0';       END IF;END IF;END PROCESS;
end Behavioral;

  2.5顶层

        顶层的作用是将子模块例化,VHDL实现和RTL分析如下

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;entity QSN_9x9_network isGENERIC(DATA_WIDTH:   INTEGER:=9;CTRL_WIDTH:   INTEGER:=4);Port (CLK:        IN  STD_LOGIC;RST_N:      IN  STD_LOGIC;EN:         IN  STD_LOGIC;SHIFT_NUM:  IN  STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);DATA_IN:    IN  STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);DATA_OUT:   OUT STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);VALID:      OUT STD_LOGIC);
end QSN_9x9_network;architecture Behavioral of QSN_9x9_network isCOMPONENT LSN_9x8_network ISGENERIC(DATA_WIDTH:   INTEGER:=9;CTRL_WIDTH:   INTEGER:=4);Port (DATA_IN:    IN  STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);LSN_CTRL:   IN  STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);DATA_OUT:   OUT STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0));END COMPONENT;COMPONENT RSN_9x9_network ISGENERIC(DATA_WIDTH:   INTEGER:=9;CTRL_WIDTH:   INTEGER:=4);Port (DATA_IN:    IN  STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);RSN_CTRL:   IN  STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);DATA_OUT:   OUT STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0));END COMPONENT;COMPONENT MN_9x9_network ISGENERIC(DATA_WIDTH:   INTEGER:=9);Port (LSN_DATA_IN:    IN  STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0);RSN_DATA_IN:    IN  STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);M_CTRL:         IN  STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0);DATA_OUT:       OUT STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0));END COMPONENT;COMPONENT CTRL ISGENERIC(DATA_WIDTH:   INTEGER:=9;CTRL_WIDTH:   INTEGER:=4);Port (CLK:        IN  STD_LOGIC;RST_N:      IN  STD_LOGIC;EN:         IN  STD_LOGIC;SHIFT_NUM:  IN  STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);M:          OUT STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0);LSN_SHIFT:  OUT STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);RSN_SHIFT:  OUT STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0); VALID:      OUT STD_LOGIC  );END COMPONENT;
--CTRL
SIGNAL M_CTRL:      STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0);
SIGNAL LSN_SHIFT:   STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);
SIGNAL RSN_SHIFT:   STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);
SIGNAL CTRL_EN:     STD_LOGIC;
--LSN
SIGNAL LSN_OUT:     STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0);
--RSN
SIGNAL RSN_OUT:     STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);
--MN_OUT
SIGNAL OUT_REG:     STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);
SIGNAL DATA_OUT_REG:STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);
--VALID_REG
SIGNAL VALID_REG:   STD_LOGIC;
beginCTRL_GE:CTRLGENERIC MAP(DATA_WIDTH =>   DATA_WIDTH,CTRL_WIDTH =>   CTRL_WIDTH)PORT MAP(CLK        =>   CLK,RST_N      =>   RST_N,EN         =>   EN,SHIFT_NUM  =>   SHIFT_NUM,M          =>   M_CTRL,LSN_SHIFT  =>   LSN_SHIFT,RSN_SHIFT  =>   RSN_SHIFT,VALID      =>   CTRL_EN);LSN:LSN_9x8_networkGENERIC MAP(DATA_WIDTH =>   DATA_WIDTH,CTRL_WIDTH =>   CTRL_WIDTH)PORT MAP(DATA_IN    =>   DATA_IN,  LSN_CTRL   =>   LSN_SHIFT,DATA_OUT   =>   LSN_OUT);RSN:RSN_9x9_networkGENERIC MAP(DATA_WIDTH =>   DATA_WIDTH,CTRL_WIDTH =>   CTRL_WIDTH)PORT MAP(DATA_IN    =>   DATA_IN,  RSN_CTRL   =>   RSN_SHIFT,DATA_OUT   =>   RSN_OUT);MN:MN_9x9_networkGENERIC MAP(DATA_WIDTH =>   DATA_WIDTH)PORT MAP(  LSN_DATA_IN=>   LSN_OUT,RSN_DATA_IN=>   RSN_OUT,M_CTRL     =>   M_CTRL,DATA_OUT   =>   OUT_REG);OUT_GE:PROCESS(CLK,RST_N)BEGINIF RST_N='0'THENDATA_OUT_REG<=(OTHERS=>'0');ELSIF RISING_EDGE(CLK)THENIF CTRL_EN='1'THENDATA_OUT_REG<=OUT_REG;END IF;END IF;END PROCESS;DATA_OUT<=DATA_OUT_REG;VALID_REG_GE:PROCESS(CLK,RST_N)BEGINIF RST_N='0'THENVALID_REG<='0';ELSIF RISING_EDGE(CLK)THENIF CTRL_EN='1'THENVALID_REG<='1';ELSEVALID_REG<='0';END IF;END IF;END PROCESS;VALID<=VALID_REG;end Behavioral;

        使用时钟CLK和复位信号RST_N控制时序,并加入输入输出使能信号。最后实现的结果如下,可以看到左循环移位1~9的结果均正确。 

这篇关于基于QC-LDPC编码的循环移位网络的FPGA实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/654862

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S