DETR解读,将Transformer带入CV

2024-01-28 18:12

本文主要是介绍DETR解读,将Transformer带入CV,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文出处

[2005.12872] End-to-End Object Detection with Transformers (arxiv.org)

一个前置知识

匈牙利算法:来源于二部图匹配,计算最小或最大匹配

算法操作:在n*n的矩阵中

  1. 减去行列最小值,更新矩阵(此时行或者列最少一个0)

  2. 最少的横线来覆盖有0的行列,横线数量等于n结束算法,否则进入循环

  3. 循环操作:取未被横线覆盖的最小值k,所有未被覆盖的数都减去k(这个步骤至少增加一个0),横线的交点加上k,再次画横线判断

匈牙利算法在CV中用于对目标检测结果的匹配,前后帧之间相同目标的匹配,实现框随目标的运动。

具体的在CV任务中匈牙利算法的匹配代价用框中点之间欧式距离, 也可以是IoU(即框之间的重合度)

DETR:Transformer实现的端到端检测算法

模型训练思路

提前用超参数设置一些预测框,然后根据图像标注的信息得知图像中的物体正确的框选。预测框要和真实的那几个框一一对应,例如图中原本只标注了2个框,但是预测了100个,是从100个中选两个对应上。然后匈牙利算法计算匹配损失,反向传播

测试阶段

计算预测框的类别置信度,达到阈值则可以保留

Transformer先编码图像信息,然后解码,自注意力机制学习图像信息

object query查询图像中是否有物体

这里和NLP任务有明显的不同点。即当前输出是不依赖前一个输出,虽然是用decoder但是多目标的检测是可以并行的

具体操作步骤

  1. backbone卷积提取特征,

  2. Encoder,特征结合位置编码,两者相加生成Q,K。做多头注意力。每次编解码都使用位置编码

  3. Decoder:可以看做两层,先query初始为0,object query这两个query是学习anchor特征,两者相加生成Q,K。再加入图像特征(上一层输出再叠加object query为Q,Encoder输出加上位置编码生成K),学习预测物体类别,坐标,预测框信息等

  4. 输出:预测类别的标签,预测框的坐标

再介绍几个改进

Deformable DETR

文章出处:[2010.04159] Deformable DETR: Deformable Transformers for End-to-End Object Detection (arxiv.org)

提出可变注意力,这个改进对DETR来说十分关键。不再做全局注意力,只对关键部份做注意力。不仅仅是解决普通DETR计算量大和收敛慢的问题,做局部的注意力使得模型更能学习到关键特征,而不是无用的信息

在这个模型中,查询的Q还是来自特征提取和位置编码。但是K的查询几个点是由用户指定的,而且点的位置是由网络学习得到的。可以理解为最终值是一个点和图中的几个关键点做多头注意力得到。

先对输入Z分别做位置编码得到查询位置的偏移量和Attention Weight,还要对Z做线性变换得到Value。通过位置偏移量就能得到要查询位置的坐标,进一步去除对应位置的Value

Multi-scale Deformable Attention:

多尺度是为了在不同的尺度都能够学习到特征,大尺度对小物体的特征学习有效,小尺度学习大物体特征有效,使用多个尺度做注意力机制模型学习到更多的东西。先分别提取多张不同尺度的feature map,转换成线性之后连接起来,当做一个token,做注意力

RT-DERT

论文出处:

[2304.08069] DETRs Beat YOLOs on Real-time Object Detection (arxiv.org)

RT DETR的提出使得DETR路线的可用性和落地的可能性更进一步。这篇文章提出的实时端到端目标检测器,出发点就是提高模型训练和推理速度。

作者提到他发现模型执行时间取决于:预测框的数量,score threshold类别阈值,IoU threshold冗余框阈值

于是针对这些问题他做了几点创新:

  1. 只对最小尺度的特征图做可变注意力,其他的尺度做特征融合
  2. 基于IoU的查询选择,提高性能
  3. 推理加速,直接使用前几个decoder的输出

 

AIFI

对于最小尺度的一个特征图做Transformer encoder,以往是多个尺度的特征拉长成一个很长的一维token,这里减少了计算量。而且小尺度的语义特征更加丰富。

CCFM

每个尺寸两两之间都做特征的融合,做上采样或下采样匹配尺寸,最终拼接成一个列表

这篇关于DETR解读,将Transformer带入CV的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/654397

相关文章

Nacos注册中心和配置中心的底层原理全面解读

《Nacos注册中心和配置中心的底层原理全面解读》:本文主要介绍Nacos注册中心和配置中心的底层原理的全面解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录临时实例和永久实例为什么 Nacos 要将服务实例分为临时实例和永久实例?1.x 版本和2.x版本的区别

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

MySQL的ALTER TABLE命令的使用解读

《MySQL的ALTERTABLE命令的使用解读》:本文主要介绍MySQL的ALTERTABLE命令的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、查看所建表的编China编程码格式2、修改表的编码格式3、修改列队数据类型4、添加列5、修改列的位置5.1、把列

Linux CPU飙升排查五步法解读

《LinuxCPU飙升排查五步法解读》:本文主要介绍LinuxCPU飙升排查五步法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录排查思路-五步法1. top命令定位应用进程pid2.php top-Hp[pid]定位应用进程对应的线程tid3. printf"%

解读@ConfigurationProperties和@value的区别

《解读@ConfigurationProperties和@value的区别》:本文主要介绍@ConfigurationProperties和@value的区别及说明,具有很好的参考价值,希望对大家... 目录1. 功能对比2. 使用场景对比@ConfigurationProperties@Value3. 核

Jupyter notebook安装步骤解读

《Jupyternotebook安装步骤解读》:本文主要介绍Jupyternotebook安装步骤,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、开始安装二、更改打开文件位置和快捷启动方式总结在安装Jupyter notebook 之前,确认您已安装pytho

Java中的StringUtils.isBlank()方法解读

《Java中的StringUtils.isBlank()方法解读》:本文主要介绍Java中的StringUtils.isBlank()方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录所在库及依赖引入方法签名方法功能示例代码代码解释与其他方法的对比总结StringUtils.isBl

对Django中时区的解读

《对Django中时区的解读》:本文主要介绍对Django中时区的解读方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录背景前端数据库中存储接口返回AI的解释问题:这样设置的作用答案获取当前时间(自动带时区)转换为北京时间显示总结背景设置时区为北京时间 TIM

Java中的内部类和常用类用法解读

《Java中的内部类和常用类用法解读》:本文主要介绍Java中的内部类和常用类用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录内部类和常用类内部类成员内部类静态内部类局部内部类匿名内部类常用类Object类包装类String类StringBuffer和Stri

JVM垃圾回收机制之GC解读

《JVM垃圾回收机制之GC解读》:本文主要介绍JVM垃圾回收机制之GC,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、死亡对象的判断算法1.1 引用计数算法1.2 可达性分析算法二、垃圾回收算法2.1 标记-清除算法2.2 复制算法2.3 标记-整理算法2.4