阿里巴巴优酷视频增强和超分辨率挑战的冠军方案:VESR-Net

本文主要是介绍阿里巴巴优酷视频增强和超分辨率挑战的冠军方案:VESR-Net,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
作者单位:中国科学技术大学、微软亚洲研究院
挑战赛链接:https://tianchi.aliyun.com/competition/entrance/231711/rankingList/1
论文链接:https://arxiv.org/pdf/2003.02115.pdf
译者:Wangsy

看点

视频增强与超分辨率(VESR)旨在从噪声和低分辨率视频帧中恢复高分辨率的细节。为了推动研究从受现实世界退化影响的低质量视频中恢复高质量视频,优酷举办了视频增强和超分辨率挑战赛,以探索在线视频应用程序中真实退化的数据集的VESR解决方案。
本文介绍了VESR-Net,它在优酷VESR挑战赛中获得第一名。具体的说:

  1. 设计了一个独立的非局部(Separate NL)模块来有效地探索视频帧之间的关系并对视频帧进行融合;
  2. 设计了一个通道注意残差块(CARB),用于在VESR网络中捕获视频帧重构的特征映射之间的关系。
    在这里插入图片描述

Youku-VESR挑战

挑战赛了收集1000个1080p视频片段,包括高分辨率和低分辨率视频对。该数据集包含了多种类型的内容,在在线视频观看应用中,低分辨率视频会受到不同噪声的影响。
挑战阶段:第一阶段,所有参与者得到200对LR和HR视频用于训练,50对LR视频用于评估。第二阶段,Youku发布650对LR和HR视频用于培训,100对LR视频用于验证。第二阶段的LR视频比第一阶段的视频退化更严重。在本文所提及的方法中,对于一共1000个视频片段,分割了50个视频用于评估,剩下的视频用于训练。
评估阶段:评估阶段定量指标是峰值信噪比(PSNR)和视频多方法评估融合(VMAF)。测试为前5个视频中的所有帧和剩下视频中的每隔5帧的下一帧。

方法

overview

VESR-Net由两部分组成:帧间融合的融合模块和帧内融合的重构模块。融合模块的目标是通过从相邻帧中提取有用信息,同时忽略时间冗余信息来融合相邻帧进行中间帧重建。因此,本文提出了一个独立的非局部模块来模拟视频特征之间的关系。在帧重建模块中,我们在残差块中引入了通道注意机制,以实现高效重建。
在这里插入图片描述
每个模块的具体网络架构如下表:
在这里插入图片描述

独立的非局部模块

在计算机视觉中的自注意机制称为非局部神经网络。然而,由于非局部神经网络中关系矩阵的高维性,非局部运算消耗了大量的参数,尤其是对于视频特征。因此,本文设计了一种新的称为独立非本地的模块,在较浅的网络中可以达到更好的性能。本文设计了三种类型的注意模块,以探索不同维度的全局上下文信息。首先,在三个分支中分别生成两个新的特征映射A1、A2、A3和B1、B2、B3。然后将它们reshape到C×T×(N×W)、T×H×W×C、C×H×W×T,通过矩阵乘法得到三个关系矩阵 M 1 ∈ R H W × H W 、 M 2 ∈ R C × C 、 M 3 ∈ R T × T M1∈\mathbb R^{HW×HW}、M2∈\mathbb R^{C×C}、M3∈\mathbb R^{T×T} M1RHW×HWM2RC×CM3RT×T。M1、M2和M3分别表示不同空间上下文、不同通道和不同时间步长之间的相似性。同时,我们将视频特征F输入到三个卷积层中,生成新的与B在同一空间中的特征映射D1、D2、D3。接下来,对D1,D2,D3的转置与M1,M2,M3进行矩阵乘法,得到结果E1,E2,E3。最后,我们在E1,E2,E3和F之间进行元素和运算,得到融合特征。
在这里插入图片描述

通道注意残差块

重建模块中残差块中的通道注意机制是VESR高效重构和良好性能的基础。在CARB中,首先执行全局平均池化获取通道描述W。然后通过两个线性层得到通道权值Z,并将通道权值Z与视频特征X相乘,最后将相乘的结果与视频特征进行concat,输入进1×1卷积层得到最终输出。
在这里插入图片描述

实验

消融实验

对提出的独立非局部模块和通道注意残差块进行消融实验,并与EDVR s m a l l _{small} small进行对比。(此处没有给两个模块都没有的实验数据,如果两个模块都没有就比EDVR性能好,该论文就没有很大的意义了,不如去讲讲没有这两个模块为什么还会比EDVR性能好)
在这里插入图片描述

量化评估

为了公平比较,EDVR s m a l l _{small} small作为baseline采用了20个残差块,其参数数量与VESR-Net s m a l l _{small} small相当。在设计的独立非局部模块和通道注意残差块的帮助下,VESR-Net比EDVR网提高了0.22dB,并且计算复杂度较低。
在这里插入图片描述

这篇关于阿里巴巴优酷视频增强和超分辨率挑战的冠军方案:VESR-Net的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/654117

相关文章

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

MySQL 迁移至 Doris 最佳实践方案(最新整理)

《MySQL迁移至Doris最佳实践方案(最新整理)》本文将深入剖析三种经过实践验证的MySQL迁移至Doris的最佳方案,涵盖全量迁移、增量同步、混合迁移以及基于CDC(ChangeData... 目录一、China编程JDBC Catalog 联邦查询方案(适合跨库实时查询)1. 方案概述2. 环境要求3.

SpringBoot3.X 整合 MinIO 存储原生方案

《SpringBoot3.X整合MinIO存储原生方案》本文详细介绍了SpringBoot3.X整合MinIO的原生方案,从环境搭建到核心功能实现,涵盖了文件上传、下载、删除等常用操作,并补充了... 目录SpringBoot3.X整合MinIO存储原生方案:从环境搭建到实战开发一、前言:为什么选择MinI

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

SQLite3 在嵌入式C环境中存储音频/视频文件的最优方案

《SQLite3在嵌入式C环境中存储音频/视频文件的最优方案》本文探讨了SQLite3在嵌入式C环境中存储音视频文件的优化方案,推荐采用文件路径存储结合元数据管理,兼顾效率与资源限制,小文件可使用B... 目录SQLite3 在嵌入式C环境中存储音频/视频文件的专业方案一、存储策略选择1. 直接存储 vs

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

javax.net.ssl.SSLHandshakeException:异常原因及解决方案

《javax.net.ssl.SSLHandshakeException:异常原因及解决方案》javax.net.ssl.SSLHandshakeException是一个SSL握手异常,通常在建立SS... 目录报错原因在程序中绕过服务器的安全验证注意点最后多说一句报错原因一般出现这种问题是因为目标服务器

SpringBoot服务获取Pod当前IP的两种方案

《SpringBoot服务获取Pod当前IP的两种方案》在Kubernetes集群中,SpringBoot服务获取Pod当前IP的方案主要有两种,通过环境变量注入或通过Java代码动态获取网络接口IP... 目录方案一:通过 Kubernetes Downward API 注入环境变量原理步骤方案二:通过

Springboot3+将ID转为JSON字符串的详细配置方案

《Springboot3+将ID转为JSON字符串的详细配置方案》:本文主要介绍纯后端实现Long/BigIntegerID转为JSON字符串的详细配置方案,s基于SpringBoot3+和Spr... 目录1. 添加依赖2. 全局 Jackson 配置3. 精准控制(可选)4. OpenAPI (Spri