使用scyllaDb 或者cassandra存储聊天记录

2024-01-28 15:20

本文主要是介绍使用scyllaDb 或者cassandra存储聊天记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、使用scyllaDb的原因

目前开源的聊天软件主要还是使用mysql存储数据,数据量大的时候比较麻烦;

我打算使用scyllaDB存储用户的聊天记录,主要考虑的优点是:

1)方便后期线性扩展服务器;

2)partition更方便,clustering 可以将一组数据放在一起,加载更快;

我的后端服务使用go来写,

使用的库为https://github.com/scylladb/gocqlx/,目前版本为2.8

go get -u github.com/scylladb/gocqlx/v2

二、测试代码

1. 连接数据库

cluster := gocql.NewCluster("127.0.0.1:9042")cluster.Keyspace = "chatdata"cluster.Authenticator = gocql.PasswordAuthenticator{Username: "cassandra",Password: "cassandra",}session, err := cluster.CreateSession()if err != nil {fmt.Println("创建会话时发生错误:", err)return}defer session.Close()sessionx, err := gocqlx.WrapSession(session, nil)if err != nil {}defer sessionx.Close()

我是测试的机器,只有一个节点,后续在数据一致性要求也都写一个节点;

2. 定义数据结构

P2P的聊天,使用如下表:

CREATE TABLE pchat (pk int,        // 分区uid1 bigint,   // 用户自己,P2P时写扩散,每个用户存储一份数据uid2 bigint,   // 对方id bigint,     // 消息全局唯一ID,服务器分配usid bigint,   // 发送方的消息唯一标记tm timestamp,   // 时间戳tm1 timestamp,  // 接收tm2 timestamp,  // 已读draf text,      // 数据io boolean,     // 收,发del boolean,    // 删除标记t smallint,     // 消息类型PRIMARY KEY (pk, uid1, tm, id)) 

在 Cassandra 中,PRIMARY KEY 的定义影响了数据如何进行分区(Partitioning)和在分区内如何进行排序(Clustering)。对于表定义 PRIMARY KEY (pk, uid1, tm, id),它的影响如下:

  1. 分区键 (pk): 数据将按照 pk 的值进行分区。相同 pk 的数据会被存储在同一分区中。

  2. 聚簇键 (uid1,tm, id): 在同一分区内,数据将按照 (uid1, tm, id) 进行排序。这意味着相同 pk 的分区内的数据将按照 uid1 的值进行子分区,然后在每个子分区内按照 tm, id 的值进行排序。

简单来说,数据会先按照 pk 进行分区,然后在每个分区内,按照 (uid1, tm, id) 进行排序。这样的设计允许你在查询时方便地按照 pkuid1 和tm,  id 进行范围查询。

  • 一对一的聊天,都是2个用户,使用写扩散方式每个用户1份数据,这样的的好处是,使用用户ID聚簇,可以提高加载速度。并且减少数据的加载次数,具体在用户的会话区分上,可以在客户端一侧,执行本地的SQLITE存储。
  • 对比tinode的策略,它是按照每个会话做一个逻辑,需要管理当前所有的会话,逐个加载或者订阅,而且在测试过程中发现BUG,当如同微信一样删除了某个会话,等于拉了黑名单,无法后续会话了,这个不符合我们的习惯。
  • 对于群组聊天,可以使用读扩散的方式,因为写扩散毕竟太占用系统资源了;按照组ID来聚簇;

相关代码如下:

// 定义表的元数据
var pchatMetadata = table.Metadata{Name:    "pchat",Columns: []string{"pk", "uid1", "uid2", "id", "usid", "tm", "tm1", "tm2", "draf", "io", "del", "t"},PartKey: []string{"pk"},SortKey: []string{"uid1", "id"},
}// 创建表对象
var pchatTable = table.New(pchatMetadata)// 定义数据结构
type PchatData struct {Pk   int       `db:"pk"`Uid1 int       `db:"uid1"`Uid2 int       `db:"uid2"`Id   int       `db:"id"`Usid int       `db:"usid"`Tm   time.Time `db:"tm"`Tm1  time.Time `db:"tm1"`Tm2  time.Time `db:"tm2"`Draf string    `db:"draf"`Io   bool      `db:"io"`Del  bool      `db:"del"`T    int       `db:"t"`
}func PchatDataToSlice(data PchatData) []interface{} {return []interface{}{data.Pk,data.Uid1,data.Uid2,data.Id,data.Usid,data.Tm,data.Tm1,data.Tm2,data.Draf,data.Io,data.Del,data.T,}
}

3. 单条数据写入

func insertData(session *gocqlx.Session) error {data := PchatData{Pk:   1,Uid1: 123456,Uid2: 789012,Id:   987654,Usid: 654321,Tm:   time.Now(),Tm1:  time.UnixMilli(0),Tm2:  time.UnixMilli(0),Draf: "你的草稿内容",Io:   true,Del:  false,T:    42,}// Insert using query builder.insertChat := qb.Insert("chatdata.pchat").Columns(pchatMetadata.Columns...).Query(*session).Consistency(gocql.One)insertChat.BindStruct(data)if err := insertChat.ExecRelease(); err != nil {fmt.Println(err)return err}return nil
}

4. 批量插入

func insertBatch(session *gocqlx.Session) error {// 创建 Batchbatch := session.Session.NewBatch(gocql.LoggedBatch)// 创建 Batch//batch := gocql.NewBatch(gocql.LoggedBatch)batch.Cons = gocql.LocalOneindex := 1// 构建多个插入语句for i := index; i < index+1000; i++ {data := PchatData{Pk:   1,Uid1: 1001,Uid2: 1005,Id:   i,Usid: i,Tm:   time.Now(),Tm1:  time.UnixMilli(0),Tm2:  time.UnixMilli(0),Draf: "你的草稿内容",Io:   true,Del:  false,T:    1,}insertChatQry := qb.Insert("chatdata.pchat").Columns(pchatMetadata.Columns...).Query(*session).Consistency(gocql.One)batch.Query(insertChatQry.Statement(),PchatDataToSlice(data)...)}if err := session.ExecuteBatch(batch); err != nil {return err}return nil
}

挺快的,我远程插入云主机,1000条数据,使用了50毫秒左右;

5.  查询所有

这里就是一个测试,真正使用中,不会这么用

func queryData(session *gocqlx.Session) error {var dataList []PchatDataq := qb.Select("chatdata.pchat").Columns(pchatMetadata.Columns...).Query(*session).Consistency(gocql.One)if err := q.Select(&dataList); err != nil {return err}//for _, c := range dataList {//	fmt.Printf("%+v \n", c)//}for _, d := range dataList {fmt.Printf("pk: %d, uid1: %d, uid2: %d, id: %d, usid: %d, tm: %v, tm1: %v, tm2: %v, draf: %s, io: %t, del: %t, t: %d\n",d.Pk, d.Uid1, d.Uid2, d.Id, d.Usid, d.Tm, d.Tm1, d.Tm2, d.Draf, d.Io, d.Del, d.T)}return nil
}

6. 游标与分页

库内部提供了一些分页机制,但是我总觉得似乎不是我想要的;测试发现比较慢,目前没深入去研究内部机制:

func queryDataByPage(session *gocqlx.Session) error {var pageSize = 10//chatTable := table.New(pchatMetadata)builder := qb.Select("chatdata.pchat").Columns(pchatMetadata.Columns...)builder.Where(qb.Eq("uid1"))builder.AllowFiltering()q := builder.Query(*session)defer q.Release()q.PageSize(pageSize)q.Consistency(gocql.One)q.Bind(1001)getUserChatFunc := func(userID int64, page []byte) (chats []PchatData, nextPage []byte, err error) {if len(page) > 0 {q.PageState(page)}iter := q.Iter()return chats, iter.PageState(), iter.Select(&chats)}var (dataList []PchatDatanextPage []byteerr      error)for i := 1; ; i++ {dataList, nextPage, err = getUserChatFunc(1001, nextPage)if err != nil {fmt.Println(err)return err}fmt.Printf("Page %d: \n", i)for _, d := range dataList {//fmt.Printf("pk: %d, uid1: %d, uid2: %d, id: %d, usid: %d, tm: %v, tm1: %v, tm2: %v, draf: %s, io: %t, del: %t, t: %d\n",//	d.Pk, d.Uid1, d.Uid2, d.Id, d.Usid, d.Tm, d.Tm1, d.Tm2, d.Draf, d.Io, d.Del, d.T)fmt.Printf("pk: %d, uid1: %d, uid2: %d, id: %d \n", d.Pk, d.Uid1, d.Uid2, d.Id)}if len(nextPage) == 0 {break}}return nil
}

7. 按用户与id号来加载

我设想的用法是,既然按照user id 聚簇了,支持多个客户端使用时,某个客户端初次加载(冷加载),可以加载最近的部分,然后根据需要在根据条件加载;持续更新的用户(热加载)首先是考虑从redis中加载,已经落库的部分再根据时间段加载;

这里测试的是,从某个ID=900的条目之后,加载10条

func queryDataByIdPage(session *gocqlx.Session) error {var pageSize uint = 10//chatTable := table.New(pchatMetadata)builder := qb.Select("chatdata.pchat").Columns(pchatMetadata.Columns...)builder.Where(qb.Eq("uid1"), qb.Gt("id"))builder.AllowFiltering()builder.Limit(pageSize)q := builder.Query(*session)defer q.Release()q.Consistency(gocql.One)q.Bind(1002, 900)var dataList []PchatDataerr := q.Select(&dataList)if err != nil {fmt.Println(err)return err}fmt.Printf("size= %d: \n", len(dataList))for _, d := range dataList {//fmt.Printf("pk: %d, uid1: %d, uid2: %d, id: %d, usid: %d, tm: %v, tm1: %v, tm2: %v, draf: %s, io: %t, del: %t, t: %d\n",//	d.Pk, d.Uid1, d.Uid2, d.Id, d.Usid, d.Tm, d.Tm1, d.Tm2, d.Draf, d.Io, d.Del, d.T)fmt.Printf("pk: %d, uid1: %d, uid2: %d, id: %d tm: %v \n", d.Pk, d.Uid1, d.Uid2, d.Id, d.Tm)}return nil
}

8. 按照时间范围来找

func string2timeLoc(dateString string) (time.Time, error) {// 设置东八区(中国标准时间)的地理位置loc, err := time.LoadLocation("Asia/Shanghai")if err != nil {fmt.Println("加载地理位置错误:", err)return time.Now(), err}// 使用地理位置信息进行日期解析parsedTime, err := time.ParseInLocation("2006-01-02 15:04:05", dateString, loc)if err != nil {fmt.Println("日期解析错误:", err)return time.Now(), err}return parsedTime, nil
}
func queryDataBytmPage(session *gocqlx.Session) error {//var pageSize uint = 10//chatTable := table.New(pchatMetadata)builder := qb.Select("chatdata.pchat").Columns(pchatMetadata.Columns...)builder.Where(qb.Eq("uid1"), qb.GtOrEq("tm"), qb.LtOrEq("tm"))builder.AllowFiltering()//builder.Limit(pageSize)q := builder.Query(*session)defer q.Release()q.Consistency(gocql.One)tm1, _ := string2timeLoc("2024-01-27 13:24:00")tm2, _ := string2timeLoc("2024-01-27 13:25:56")q.Bind(1001, tm1, tm2)var dataList []PchatDataerr := q.Select(&dataList)if err != nil {fmt.Println(err)return err}fmt.Printf("size= %d: \n", len(dataList))for _, d := range dataList {//fmt.Printf("pk: %d, uid1: %d, uid2: %d, id: %d, usid: %d, tm: %v, tm1: %v, tm2: %v, draf: %s, io: %t, del: %t, t: %d\n",//	d.Pk, d.Uid1, d.Uid2, d.Id, d.Usid, d.Tm, d.Tm1, d.Tm2, d.Draf, d.Io, d.Del, d.T)fmt.Printf("pk: %d, uid1: %d, uid2: %d, id: %d tm: %v \n", d.Pk, d.Uid1, d.Uid2, d.Id, d.Tm)}return nil
}

9. 倒序

这个库的说明并不详细,readme.md还是过时的,chatgtp给的信息也是错误很多,目前根据测试发现,在设置排序方式时:

在 Cassandra 中,ORDER BY 子句需要按照聚簇键的声明顺序指定。在表定义中,聚簇键是 (uid1, tm, id),所以需要按照这个顺序指定 ORDER BY。

在代码中,需要按照以下方式指定 ORDER BY:

builder := qb.Select("chatdata.pchat").Columns(pchatMetadata.Columns...)builder.Where(qb.Eq("pk"), qb.Eq("uid1"), qb.GtOrEq("tm"), qb.LtOrEq("tm"))builder.OrderBy("uid1", qb.DESC)//builder.OrderBy("tm", qb.DESC)//builder.OrderBy("id", qb.DESC)// 写一个就够了builder.AllowFiltering()//builder.Limit(pageSize)q := builder.Query(*session)defer q.Release()q.Consistency(gocql.One)tm1, _ := string2timeLoc("2024-01-27 13:24:00")tm2, _ := string2timeLoc("2024-01-27 13:25:56")q.Bind(1, 1001, tm1, tm2)

其中,pk 作为分区键,不能排序,而聚簇的键需要按照顺序指定,其中不能混!要么都是升序,要么都是降序,否则执行时候报错“Unsupported order by relation”。

这篇关于使用scyllaDb 或者cassandra存储聊天记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/654031

相关文章

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时