[组合数取模] 方法汇总

2024-01-28 13:08
文章标签 组合 方法 汇总 数取模

本文主要是介绍[组合数取模] 方法汇总,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.利用整数唯一分解定理,求(n+1-m) * (n+m)!  /  ( m! * (n+1)!  )

任何正整数都有且只有一种方法写出其素因子幂相乘的形式。比如18= 2 * 3^2

A=(p1^k1)*(p2^k2)*(p3^k3)*(p4^k4)*......*(pn^kn)   pi为素数

还有把阶层看作一个数,比m! 怎样求m!里面素数2的指数呢?

cnt=0;   while(m)  {  m/=2; cnt+=m; }  就可以了,为什么呢?考虑m=4,则m!=  4*3*2*1, 第一次m/=2,是计算m!里面有多少个数能整除2的(有4,2),所以cnt+=2,有两个数贡献

了两个素数2,接下来第二次m/=2,是计算m!里面有多少个数能整除4的,有1个数又贡献了一个素数2.

所以先预先筛出最大范围内的素数,然后考虑每个素数就好了,关键是求出整个式子的该素数的指数是多少。

模板:

bool isprime[maxn*2+10];
int prime[maxn*2+10];
int len=0;//素数的个数
int n,m;
void sieve(int n)//筛n以内的素数
{for(int i=0;i<=n;i++)isprime[i]=1;isprime[0]=isprime[1]=0;for(int i=2;i<=n;i++)if(isprime[i]){prime[len++]=i;for(int j=2*i;j<=n;j+=i)isprime[j]=0;}
}
int cal(int p,int n)//计算n!里面有多少个p相乘
{int ans=0;while(n){n/=p;ans+=n;}return ans;
}int main()
{sieve(maxn*2);long long ans=1;//记得要用long longcin>>n>>m;int nm=n+1-m;for(int i=0;i<len&&prime[i]<=(n+m);i++)//prime[i]<=(n+m)是因为拆成素数幂相乘的形式该素数不会大于n+m,最大(n+m)!   (n+m)*(n+m-1)*(n+m-2).....{int cnt=0;//分解为素数prime[i]的指数是多少while(nm%prime[i]==0)//nm中有多少个prime[i],也就是把nm分解后prime[i]的指数{nm/=prime[i];cnt++;}cnt=cnt+cal(prime[i],n+m)-cal(prime[i],m)-cal(prime[i],n+1);//加上分子的指数再减去分母的指数for(int j=1;j<=cnt;j++){ans=ans*prime[i];if(ans>=mod)ans%=mod;}}cout<<ans<<endl;return 0;
}


 

 

 

 

 

 

这篇关于[组合数取模] 方法汇总的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/653718

相关文章

Android 12解决push framework.jar无法开机的方法小结

《Android12解决pushframework.jar无法开机的方法小结》:本文主要介绍在Android12中解决pushframework.jar无法开机的方法,包括编译指令、框架层和s... 目录1. android 编译指令1.1 framework层的编译指令1.2 替换framework.ja

Android实现定时任务的几种方式汇总(附源码)

《Android实现定时任务的几种方式汇总(附源码)》在Android应用中,定时任务(ScheduledTask)的需求几乎无处不在:从定时刷新数据、定时备份、定时推送通知,到夜间静默下载、循环执行... 目录一、项目介绍1. 背景与意义二、相关基础知识与系统约束三、方案一:Handler.postDel

在.NET平台使用C#为PDF添加各种类型的表单域的方法

《在.NET平台使用C#为PDF添加各种类型的表单域的方法》在日常办公系统开发中,涉及PDF处理相关的开发时,生成可填写的PDF表单是一种常见需求,与静态PDF不同,带有**表单域的文档支持用户直接在... 目录引言使用 PdfTextBoxField 添加文本输入域使用 PdfComboBoxField

SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法

《SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法》在SQLyog中执行存储过程时出现的前置缩进问题,实际上反映了SQLyog对SQL语句解析的一个特殊行为,本文给大家介绍了详... 目录问题根源正确写法示例永久解决方案为什么命令行不受影响?最佳实践建议问题根源SQLyog的语句分

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java中的工具类命名方法

《Java中的工具类命名方法》:本文主要介绍Java中的工具类究竟如何命名,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java中的工具类究竟如何命名?先来几个例子几种命名方式的比较到底如何命名 ?总结Java中的工具类究竟如何命名?先来几个例子JD