直线拟合(支持任意维空间的直线拟合,附代码)

2024-01-28 08:52

本文主要是介绍直线拟合(支持任意维空间的直线拟合,附代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

一、问题描述

  给定一系列的三维空间点 ( x i , y i , z i ) , i = 1 , 2 , . . . , n (x_i,y_i,z_i),i=1,2,...,n (xi,yi,zi),i=1,2,...,n,拟合得到直线的方程。本文的直线拟合方法适用于任意维空间的直线拟合,不失一般性,这里以三维空间的直线拟合为例。本文的直线拟合方法的基本思想参考博文:最小二乘法三维(k维)直线拟合。

二、推导步骤

  设直线的点向式方程为:
x − x 0 a = y − y 0 b = z − z 0 c = s (1) \frac{x-x_0}{a}=\frac{y-y_0}{b}=\frac{z-z_0}{c}=s \tag 1 axx0=byy0=czz0=s(1)
  由式(1),得到直线的参数方程为:
{ x = x 0 + a s y = y 0 + b s z = z 0 + c s (2) \left\{ \begin{array}{c} x=x_0+as \\ y=y_0+bs \\ \tag 2 z=z_0+cs\end{array}\right. x=x0+asy=y0+bsz=z0+cs(2)
  式(2)写成向量形式为:
L = L 0 + v s (3) \bm{L}=\bm{L_0}+\bm{v}s \tag 3 L=L0+vs(3)
  其中, L = [ x , y , z ] T \bm{L}=[x,y,z]^T L=[x,y,z]T L 0 = [ x 0 , y 0 , z 0 ] T \bm{L_0}=[x_0,y_0,z_0]^T L0=[x0,y0,z0]T为直线上任意一点, v = [ a , b , c ] T \bm{v}=[a,b,c]^T v=[a,b,c]T为直线的单位方向向量。
  如下图,红色点 L i ( x i , y i , z i ) L_i(x_i,y_i,z_i) Li(xi,yi,zi)为给定的一系列三维空间点,根据给定三维空间点,拟合直线方程(3),也就是计算 L 0 \bm{L_0} L0 v \bm{v} v,使得在某种“距离”的度量下,达到最佳的直线拟合效果。
在这里插入图片描述
  点 L i L_i Li到直线距离的平方为:
∣ ∣ Q i L i ∣ ∣ 2 = ∣ ∣ L 0 L i ∣ ∣ 2 − ∣ ∣ L 0 Q i ∣ ∣ 2 (4) ||\bm{Q_iL_i}||^2 = ||\bm{L_0L_i}||^2 -||\bm{L_0Q_i}||^2 \tag 4 ∣∣QiLi2=∣∣L0Li2∣∣L0Qi2(4)
   L 0 L i \bm{L_0L_i} L0Li在直线的投影的平方为:
∣ ∣ L 0 Q i ∣ ∣ 2 = ( L 0 L i ⋅ v ) 2 (5) ||\bm{L_0Q_i}||^2= (\bm{L_0L_i} \cdot \bm{v})^2\tag 5 ∣∣L0Qi2=(L0Liv)2(5)
  令向量 Y i = L 0 L i = L i − L 0 \bm{Y_i}=\bm{L_0L_i}=\bm{L_i}-\bm{L_0} Yi=L0Li=LiL0,式(4)写成:
∣ ∣ Q i L i ∣ ∣ 2 = ∣ ∣ Y i ∣ ∣ 2 − ( Y i ⋅ v ) 2 = Y i T Y i − ( v T Y i ) 2 (6) ||\bm{Q_iL_i}||^2 = ||\bm{Y_i}||^2 -(\bm{Y_i} \cdot \bm{v})^2= \bm{Y_i}^T \bm{Y_i} -(\bm{v}^T \bm{Y_i})^2 \tag 6 ∣∣QiLi2=∣∣Yi2(Yiv)2=YiTYi(vTYi)2(6)
  在最小二乘准则下,可以建立直线拟合的优化模型目标函数:
f = ∑ i = 1 n ∣ ∣ Q i L i ∣ ∣ 2 = ∑ i = 1 n [ Y i T Y i − ( v T Y i ) 2 ] (7) f=\sum\limits_{i=1}^{n} ||\bm{Q_iL_i}||^2 = \sum\limits_{i=1}^{n}[ \bm{Y_i}^T \bm{Y_i} -(\bm{v}^T \bm{Y_i})^2] \tag 7 f=i=1n∣∣QiLi2=i=1n[YiTYi(vTYi)2](7)
  计算 L 0 \bm{L_0} L0:
  目标函数 f f f对向量 Y i \bm{Y_i} Yi求偏导数:
∂ f ∂ Y i = ∑ i = 1 n ( 2 Y i − 2 v T Y i v ) = ∑ i = 1 n ( 2 Y i − 2 v v T Y i ) = ∑ i = 1 n 2 ( I − v v T ) Y i (8) \frac{ \partial f }{ \partial \bm{Y_i} }=\sum\limits_{i=1}^{n} ( 2\bm{Y_i} -2\bm{v}^T \bm{Y_i}\bm{v})=\sum\limits_{i=1}^{n} ( 2\bm{Y_i} -2\bm{v}\bm{v}^T \bm{Y_i})=\sum\limits_{i=1}^{n}2 (\bm{ I} -\bm{v}\bm{v}^T ) \bm{Y_i}\tag 8 Yif=i=1n(2Yi2vTYiv)=i=1n(2Yi2vvTYi)=i=1n2(IvvT)Yi(8)
  式(8)中,利用了恒等式 v T Y i v ≡ v v T Y i \bm{v}^T \bm{Y_i}\bm{v}\equiv \bm{v}\bm{v}^T \bm{Y_i} vTYivvvTYi,简单进行验算可以证明该恒等式。
  由于 v \bm{v} v为单位向量,可以证明 I − v v T ≠ 0 \bm{ I} -\bm{v}\bm{v}^T\ne \bm{0} IvvT=0
  因此
∑ i = 1 n Y i = ∑ i = 1 n ( L i − L 0 ) = ∑ i = 1 n L i − n L 0 = 0 (9) \sum\limits_{i=1}^{n}\bm{Y_i}= \sum\limits_{i=1}^{n}(\bm{L_i}-\bm{L_0})=\sum\limits_{i=1}^{n}\bm{L_i}-n\bm{L_0}=\bm{0}\tag 9 i=1nYi=i=1n(LiL0)=i=1nLinL0=0(9)
L 0 = 1 n ∑ i = 1 n L i (10) \bm{L_0}=\frac{1}{n}\sum\limits_{i=1}^{n}\bm{L_i}\tag {10} L0=n1i=1nLi(10)
  可以得到结论:待拟合的直线经过一个点 L 0 \bm{L_0} L0,该点的坐标为所有给定点的坐标平均值。如下图所示,一旦确定直线的单位方向向量 v \bm{v} v,则直线的方程便确定。
在这里插入图片描述
  计算 v \bm{v} v:
  对于单位向量 v \bm{v} v v T v = 1 \bm{v}^T\bm{v}=1 vTv=1,可以证明: Y i T Y i ≡ v T ( Y i T Y i ) v \bm{Y_i}^T \bm{Y_i} \equiv\bm{v^T}(\bm{Y_i}^T \bm{Y_i})\bm{v} YiTYivT(YiTYi)v ( v T Y i ) 2 ≡ v T ( Y i Y i T ) v (\bm{v}^T \bm{Y_i})^2 \equiv \bm{v}^T(\bm{Y_i}\bm{Y_i^T})\bm{v} (vTYi)2vT(YiYiT)v

  式(7)可改写成:
f = ∑ i = 1 n [ Y i T Y i − ( v T Y i ) 2 ] = ∑ i = 1 n [ v T ( Y i T Y i ) v − v T ( Y i Y i T ) v ] = v T ∑ i = 1 n [ ( Y i T Y i ) I − Y i Y i T ] v (11) f=\sum\limits_{i=1}^{n}[ \bm{Y_i}^T \bm{Y_i} -(\bm{v}^T \bm{Y_i})^2] =\sum\limits_{i=1}^{n}[ \bm{v^T}(\bm{Y_i}^T \bm{Y_i})\bm{v} -\bm{v}^T(\bm{Y_i}\bm{Y_i^T})\bm{v}] = \bm{v^T}\sum\limits_{i=1}^{n}[ (\bm{Y_i}^T \bm{Y_i}) \bm{I} -\bm{Y_i}\bm{Y_i^T}] \bm{v}\tag {11} f=i=1n[YiTYi(vTYi)2]=i=1n[vT(YiTYi)vvT(YiYiT)v]=vTi=1n[(YiTYi)IYiYiT]v(11)
  令矩阵 S = ∑ i = 1 n [ ( Y i T Y i ) I − Y i Y i T ] S=\sum\limits_{i=1}^{n}[ (\bm{Y_i}^T \bm{Y_i}) \bm{I} -\bm{Y_i}\bm{Y_i^T}] S=i=1n[(YiTYi)IYiYiT],式(11)可写成:

f = v T S v (12) f= \bm{v^T}S \bm{v}\tag {12} f=vTSv(12)
   f f f的最小值为矩阵 S S S最小特征值对应的特征向量。直线方向向量 v v v的求解问题转化为矩阵最小特征值对应的特征向量的求解问题!

三、 M A T L A B MATLAB MATLAB代码

%{
Function: line_fitting
Description: 直线拟合
Input: 任意维直线点数据points,行数为点个数,列数为点的维数
Output: 拟合得到的直线经过的一点L0,直线的单位方向向量v
Author: Marc Pony(marc_pony@163.com)
%}
function [L0, v] = line_fitting(points)
n = size(points, 1);
x = points(:, 1);
y = points(:, 2);
z = points(:, 3);L0 = [mean(x); mean(y); mean(z)];
S = zeros(3,3);
for i = 1 : nYi = [x(i) - L0(1); y(i) - L0(2); z(i) - L0(3)];S = S + (Yi' * Yi * eye(3, 3) - Yi * Yi');
end
[V, ~] = eig(S);v = V(:, 1); %矩阵S最小特征值对应的特征向量
end
%{
Function: generate_line_points
Description: 直线路径点生成
Input: 直线经过的一点L0,直线的单位方向向量v,点个数n,路径标量最小值minS,路径标量最大值maxS
Output: 任意维直线点数据points,行数为点个数,列数为点的维数
Author: Marc Pony(marc_pony@163.com)
%}
function points = generate_line_points(L0, v, n, minS, maxS)
points = zeros(n, length(v));
s = linspace(minS, maxS, n);
for i = 1 : npoints(i, :) = (L0 + v * s(i))';
end
end
clear
clc
close all%% 验证恒等式: v'*Yi*v = v*v'*Yi
syms v1 v2 v3 y1 y2 y3 real
v = [v1; v2; v3];
Yi = [y1; y2; y3];
res1 = simplify(v'*Yi*v - v*v'*Yi)%% 验证恒等式: Yi'*Yi = v'*(Yi'*Yi)*v, 其中v'*v=1
res2 = [Yi'*Yi; simplify(v'*(Yi'*Yi)*v)]%% 验证恒等式: (v'*Yi)^2 = v'*(Yi*Yi')*v
res3 = simplify((v'*Yi)^2 - v'*(Yi*Yi')*v)% points = [1 0 0
%     1 10 0
%     1 20 0
%     ];
% points = [0 1 0
%     10 1 0
%     200 1 0
%     ];
% points = [1 1 1
%     2 1 2
%     ];figure
axis([-10, 10, -10, 10])
hold on
pointCount = 6;
points = zeros(pointCount, 3);
for i = 1 : pointCount[points(i, 1), points(i, 2)] = ginput(1);plot(points(i, 1), points(i, 2), '+')
end[L0, v] = line_fitting(points)n = 100;
len = sqrt((max(points(:,1)) - min(points(:,1)))^2 + (max(points(:,2)) - min(points(:,2)))^2 + (max(points(:,3)) - min(points(:,3)))^2);
minS = -0.6 * len;
maxS = 0.6 * len;
p = generate_line_points(L0, v, n, minS, maxS);
plot3(p(:,1), p(:,2), p(:,3), '-')

在这里插入图片描述

这篇关于直线拟合(支持任意维空间的直线拟合,附代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/653111

相关文章

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim

jupyter代码块没有运行图标的解决方案

《jupyter代码块没有运行图标的解决方案》:本文主要介绍jupyter代码块没有运行图标的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录jupyter代码块没有运行图标的解决1.找到Jupyter notebook的系统配置文件2.这时候一般会搜索到

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La