面向Java开发者的ChatGPT提示词工程(11)扩写

2024-01-28 06:44

本文主要是介绍面向Java开发者的ChatGPT提示词工程(11)扩写,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

GPT

什么是扩写?

扩写是指将较短的文本交给GPT生成更长的文本。比如:根据一组基本指令,写出一封完整的电子邮件;或者根据一系列主题,创作出一篇包含这些主题的文章。

这样的技术,有着广阔的应用场景,就如同我们可以利用它作为我们头脑风暴的伙伴,帮助我们创新思考,解决问题。然而,我必须坦白,这样的技术也可能被滥用,比如有人可能会利用它产生大量的垃圾邮件,让人头疼。

因此,我想提醒大家,在使用这些技术时,我们要有责任心,要以一种有益于社会,有益于人们的方式来使用。我们的技术,不仅仅是为了解决问题,更是为了创造价值,为了让世界变得更好。

temperature参数

在我们探索如何运用GPT进行文字扩写的过程中,有一个参数值得我们特别关注,那就是temperature。你可以将这个参数理解为GPT的探索性或随机性的度量。举个例子,假设我们输入的短语是“我的属相是”,GPT可能会预测出最有可能的下一个字是“鼠”,然后是“牛”和“虎”。

如果我们将temperature设置为0.0,GPT会始终选择最有可能的下一个字,也就是在这个例子中的“鼠”。然而,如果我们提高temperature的值,GPT就有可能选择不太可能出现的字,甚至在temperature值更高时,它可能会选择“虎”,尽管这个选择只有10%的概率。

你可以想象,随着GPT继续生成更多的字,最终的回答可能会与最初的回答“我的属相是鼠”有所不同。因此,如果你正在构建一个需要可预测响应的应用程序,我建议你将temperature设置为0.0。在我之前的文章中,我们也是将temperature设置为0.0,如果你希望构建一个稳定、可预测的系统,这个选择应该是合适的。

然而,如果你期望以更有创新性的方式使用模型,可能就需要提高temperature的值,以便获得更多不同的输出。

原来我们写的getCompletion方法是这样的(你是否还记得呢?😀):

public static String getCompletion(String prompt) {//国内需要代理Proxy proxy = Proxys.http("127.0.0.1", 7890);ChatGPT chatGpt = ChatGPT.builder().apiKey(Constants.API_KEY).proxy(proxy).apiHost("https://api.openai.com/") //反向代理地址.build().init();ChatCompletion chatCompletion = ChatCompletion.builder().messages(Collections.singletonList(Message.of(prompt))).model("gpt-3.5-turbo") // GPT的模型名称.temperature(0.0) // GPT输出的随机程度.build();ChatCompletionResponse response = chatGpt.chatCompletion(chatCompletion);return response.getChoices().get(0).getMessage().getContent();
}

因为temperature一直是0.0。所以,我们需要把原来的代码稍微修改一下,让它支持temperature的设置:

public static String getCompletion(String prompt) {return getCompletion(prompt, 0.0);
}public static String getCompletion(String prompt, double temperature) {//国内需要代理Proxy proxy = Proxys.http("127.0.0.1", 7890);ChatGPT chatGpt = ChatGPT.builder().apiKey(Constants.API_KEY).proxy(proxy).apiHost("https://api.openai.com/") //反向代理地址.build().init();ChatCompletion chatCompletion = ChatCompletion.builder().messages(Collections.singletonList(Message.of(prompt))).model("gpt-3.5-turbo") // GPT的模型名称.temperature(temperature) // GPT输出的随机程度.build();ChatCompletionResponse response = chatGpt.chatCompletion(chatCompletion);return response.getChoices().get(0).getMessage().getContent();
}

撰写评论的回复

假设你是一个淘宝卖家,你可能经常会面临这样的问题:如何对买家的评论进行回复?你可能已经厌倦了那些千篇一律、毫无新意的回复,而且这样的回复也无法体现出你对买家的尊重和诚意。那么,有没有一种方法可以让我们的回复变得更有深度、更有诚意呢?

我们可以让GPT充当我们的文案写手,帮助我们对买家的评论进行回复。GPT不仅能够理解评论中的具体内容,还可以用简洁、专业的语气来撰写回复。

public static void main(String[] args) {String text = "包包的质感很好,不是软塌塌的料子,背上很百搭,裙子、T恤搭配都很好看,内里还有个带拉链的隔层,放些重要的东西不会掉,包的走线工整,一个线头都没有,细节做的很到位,字母部分印的很好。";String prompt = "你是一名文案写手,您的任务是对买家的评论进行回复。\n"+ "根据三个反引号之间的买家评论,生成回复以感谢买家的评论。\n"+ "确保使用评论中的具体细节,以简洁且专业的语气撰写。\n\n"+ "```\n"+ "%s\n"+ "```";String response = getCompletion(String.format(prompt, text), 0.7);System.out.println(response);
}

在我们的代码里,你可能已经注意到了一个名为temperature的参数,其值被设定为0.7。这个参数在代码中起到了什么作用呢?正如上文提到的,temperature的设定与我们的预期结果有着密切的关系。当temperature被设定为0.0时,无论多少次执行,只要提示词相同,你所得到的结果也将可能是相同的。然而,当我们将temperature的值调整为0.7时,情况就会有所不同。此时,即使提示词相同,你每次执行都将会得到不同的结果。这就是temperature参数在我们代码中的神奇之处,它决定了结果的多样性。

运行一下,可以得到如下回复:

尊敬的买家,感谢您对我们包包的细致评价!我们很高兴听到您喜欢我们包包的质感和匹配性。我们深知内部设计的重要性,所以特意加入了带拉链的隔层供您放置重要物品。同时,我们也一直致力于保持产品的工艺精细,字母印制的质量也是我们重视的部分。您的认可是我们努力的最大回报,期待您的再次光临,我们会持续为您提供优质的产品和服务。

不做任何改动,再运行一下,还可以得到和上面不同的回复:

尊敬的买家,非常感谢您的详细评价和对我们产品的认可。我们很高兴听到您喜欢包包的质感和设计,以及我们对于细节的处理,包括走线工整和字母部分的印刷。我们始终致力于为您提供高质量的产品和满意的购物体验。再次感谢您的支持!

这样,我们就可以根据买家的评论内容,生成出贴切、有深度的回复,不仅可以体现出我们的专业性,还可以让买家感受到我们的诚意。这种方法不仅可以提高我们的工作效率,还可以提升我们的服务质量,为我们赢得更多的好评。

总结

我们了解了如何使用GPT进行文字扩写,以及如何调整temperature参数来改变GPT的输出。我们还了解了如何使用GPT来撰写评论的回复。这些都是我们在实际工作中可以应用的技术,我希望这些知识能够对你有所帮助。

然而,我还想提醒大家,无论我们使用什么样的技术,我们都需要有责任感。我们不能滥用这些技术,我们需要以一种有益于社会,有益于人们的方式来使用它们。我们的技术,不仅仅是为了解决问题,更是为了创造价值,为了让世界变得更好。

《面向Java开发者的ChatGPT提示词工程》总目录

  • 面向Java开发者的ChatGPT提示词工程(1)准备工作
  • 面向Java开发者的ChatGPT提示词工程(2)使用分隔符、结构化输出
  • 面向Java开发者的ChatGPT提示词工程(3)GPT自我检查、尽量少的提示词
  • 面向Java开发者的ChatGPT提示词工程(4)明确步骤、GPT自己找解决方案
  • 面向Java开发者的ChatGPT提示词工程(5)避免幻觉
  • 面向Java开发者的ChatGPT提示词工程(6)迭代改进提示词
  • 面向Java开发者的ChatGPT提示词工程(7)总结、提取特定信息
  • 面向Java开发者的ChatGPT提示词工程(8)识别情感、推理主题
  • 面向Java开发者的ChatGPT提示词工程(9)翻译、语气转换、格式转换
  • 面向Java开发者的ChatGPT提示词工程(10)拼写检查、语法检查及应用实例
  • 面向Java开发者的ChatGPT提示词工程(11)扩写

这篇关于面向Java开发者的ChatGPT提示词工程(11)扩写的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/652792

相关文章

SpringBoot结合Knife4j进行API分组授权管理配置详解

《SpringBoot结合Knife4j进行API分组授权管理配置详解》在现代的微服务架构中,API文档和授权管理是不可或缺的一部分,本文将介绍如何在SpringBoot应用中集成Knife4j,并进... 目录环境准备配置 Swagger配置 Swagger OpenAPI自定义 Swagger UI 底

解决hive启动时java.net.ConnectException:拒绝连接的问题

《解决hive启动时java.net.ConnectException:拒绝连接的问题》Hadoop集群连接被拒,需检查集群是否启动、关闭防火墙/SELinux、确认安全模式退出,若问题仍存,查看日志... 目录错误发生原因解决方式1.关闭防火墙2.关闭selinux3.启动集群4.检查集群是否正常启动5.

SpringBoot集成EasyExcel实现百万级别的数据导入导出实践指南

《SpringBoot集成EasyExcel实现百万级别的数据导入导出实践指南》本文将基于开源项目springboot-easyexcel-batch进行解析与扩展,手把手教大家如何在SpringBo... 目录项目结构概览核心依赖百万级导出实战场景核心代码效果百万级导入实战场景监听器和Service(核心

idea Maven Springboot多模块项目打包时90%的问题及解决方案

《ideaMavenSpringboot多模块项目打包时90%的问题及解决方案》:本文主要介绍ideaMavenSpringboot多模块项目打包时90%的问题及解决方案,具有很好的参考价值,... 目录1. 前言2. 问题3. 解决办法4. jar 包冲突总结1. 前言之所以写这篇文章是因为在使用Mav

Spring Security6.3.x的使用指南与注意事项

《SpringSecurity6.3.x的使用指南与注意事项》SpringSecurity6.3.1基于现代化架构,提供简洁配置、增强默认安全性和OAuth2.1/OIDC支持,采用Lambda... 目录介绍基础配置 (Servlet 应用 - 使用 Lambda DSL)关键配置详解(Lambda DS

Java Stream 的 Collectors.toMap高级应用与最佳实践

《JavaStream的Collectors.toMap高级应用与最佳实践》文章讲解JavaStreamAPI中Collectors.toMap的使用,涵盖基础语法、键冲突处理、自定义Map... 目录一、基础用法回顾二、处理键冲突三、自定义 Map 实现类型四、处理 null 值五、复杂值类型转换六、处理

SpringBoot实现RSA+AES自动接口解密的实战指南

《SpringBoot实现RSA+AES自动接口解密的实战指南》在当今数据泄露频发的网络环境中,接口安全已成为开发者不可忽视的核心议题,RSA+AES混合加密方案因其安全性高、性能优越而被广泛采用,本... 目录一、项目依赖与环境准备1.1 Maven依赖配置1.2 密钥生成与配置二、加密工具类实现2.1

在Java中实现线程之间的数据共享的几种方式总结

《在Java中实现线程之间的数据共享的几种方式总结》在Java中实现线程间数据共享是并发编程的核心需求,但需要谨慎处理同步问题以避免竞态条件,本文通过代码示例给大家介绍了几种主要实现方式及其最佳实践,... 目录1. 共享变量与同步机制2. 轻量级通信机制3. 线程安全容器4. 线程局部变量(ThreadL

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的