ReentrantReadWriteLock读写锁简单原理案例证明

2024-01-28 05:50

本文主要是介绍ReentrantReadWriteLock读写锁简单原理案例证明,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

 

ReentrantReadWriteLock存在原因?

独占获取锁简单流程

共享获取锁简单流程

写锁降级

总结


ReentrantReadWriteLock存在原因?


我们知道List的实现类ArrayList,LinkedList都是非线程安全的,Vector类通过用synchronized修饰方法保证了List的多线程非安全问题,但是有个缺点:读写同步,效率低下。于是就出现了CopyOnWriteArrayList,它通过写时复制数组实现了读写分离,提高了多线程对List读的效率,适合多读少些的情况。同理:我们知道ReentrantLock,它是一把独占的锁,是用来控制线程同步的,如果我们用ReentrantLock来实现ArrayList安全,能否达到CopyOnWriteArrayList同样的效果呢?

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.locks.ReentrantReadWriteLock;/*** @author :jiaolian* @date :Created in 2021-01-26 15:49* @description:ReentrantReadWriteLock多读少写的场景* @modified By:* 公众号:叫练*/
public class MultReadTest {private static class MyList {private final ReentrantReadWriteLock REENTRANT_READ_WRITE_LOCK = new ReentrantReadWriteLock();private final ReentrantReadWriteLock.WriteLock WRITE_LOCK = REENTRANT_READ_WRITE_LOCK.writeLock();private final ReentrantReadWriteLock.ReadLock READ_LOCK = REENTRANT_READ_WRITE_LOCK.readLock();private List<String> list = new ArrayList();//读listpublic void readList() {try {READ_LOCK.lock();Thread.sleep(1000);System.out.println(Thread.currentThread().getName()+":"+list.size());} catch (InterruptedException e) {e.printStackTrace();} finally {READ_LOCK.unlock();}}//写listpublic void writeList() {try {WRITE_LOCK.lock();Thread.sleep(1000);System.out.println(Thread.currentThread().getName()+":新增1个元素");list.add("叫练【公众号】");} catch (InterruptedException e) {e.printStackTrace();} finally {WRITE_LOCK.unlock();}}}public static void main(String[] args) {MyList myList = new MyList();//读写锁适合多读少写情况//新建10个读线程,1个写线程new Thread(()->{myList.writeList();},"写线程").start();for (int i=0; i<10; i++) {new Thread(()->{myList.readList();},"读线程"+(i+1)).start();}}}

上面案例我们用ReentrantReadWriteLock实现了CopyOnWriteArrayList,主线程新建了1个写线程写list,10个读线程读list,程序一共花费2执行完毕,如果用Vector需要花费11秒。在多线程的情况下,通过读写锁操作List,提高了List的读效率,在List读的部分,线程是共享的,在对List写的过程中,在对写的线程是同步的,因此我们可以得出一个结论:读写锁是读读共享,读写同步

 

 

独占获取锁简单流程


image.png

如上图,我们简单的梳理下独占获取锁流程。

  1. 独占锁获取(上述例子中的WRITE_LOCK写锁),首先判断是否有线程获取了锁,是否有线程获取了锁的判断通过读写锁中通过32位int类型state可以获取,其中低16位表示读锁,高16表示写锁。
  2. 有读锁:直接排队阻塞。
  3. 有写锁:还需要判断写锁线程是否是自己,如果是自己就是锁重入了,如果不是自己说明已经有其他的线程获取锁正在执行,那么当前线程需要排队阻塞。
  4. 无锁:直接获取锁,其他抢占的独占锁线程需要排队阻塞,当前线程执行完毕后释放锁通知下一个排队线程获取锁。

 

共享获取锁简单流程


image.png

如上图,我们简单的梳理下共享锁获取锁流程。

  1. 独占锁获取(上述例子中的READ_LOCK读锁),首先判断是否有线程获取了锁。
  2. 有读锁:当前线程发现此时读锁状态被占用,说明有线程获取了读锁。该线程通过cas自旋【死循环】获取到读锁为止。
  3. 有写锁:还需要判断持有写锁的线程是否是自己,如果是自己而且此时是获取的是读锁会获取锁成功,我们称为锁降级,如果不是自己说明此时有其他线程获取了写锁,那么当前线程需要排队阻塞。
  4. 无锁:直接获取锁。

 

写锁降级


我们说读写互斥,但同一个线程中,先写后读也是允许的,我们称之为锁降级。在面试中共享锁面试频率也比较高,方便理解我们举个简单的案例说明下。

import java.util.concurrent.locks.ReentrantReadWriteLock;/*** @author :jiaolian* @date :Created in 2021-01-28 15:44* @description:ReentrantReadWriteLock读写锁降级测试* @modified By:* 公众号:叫练*/
public class WriteLockLowerTest {private static final ReentrantReadWriteLock REENTRANT_READ_WRITE_LOCK = new ReentrantReadWriteLock();private static final ReentrantReadWriteLock.WriteLock WRITE_LOCK = REENTRANT_READ_WRITE_LOCK.writeLock();private static final ReentrantReadWriteLock.ReadLock READ_LOCK = REENTRANT_READ_WRITE_LOCK.readLock();public static void main(String[] args) {try {WRITE_LOCK.lock();System.out.println("获取写锁");READ_LOCK.lock();System.out.println("获取读锁");} finally {READ_LOCK.unlock();System.out.println("释放写锁");WRITE_LOCK.unlock();System.out.println("释放读锁");}}
}

如上述代码:程序可以运行完毕,说明锁可以降级。另外说一句,上面的程序先获取读锁再获取写锁,程序是会阻塞的,为什么呢?欢迎小伙伴在留言区写下评论!

 

 

总结


今天我们用通俗易懂的文字描述了ReentrantReadWriteLock读写锁。喜欢的请点赞加评论哦!点关注,不迷路,我是叫练【公众号】,边叫边练。期待我们下次再见!

tempimage1611629165941.gif

 

 

这篇关于ReentrantReadWriteLock读写锁简单原理案例证明的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/652648

相关文章

Python yield与yield from的简单使用方式

《Pythonyield与yieldfrom的简单使用方式》生成器通过yield定义,可在处理I/O时暂停执行并返回部分结果,待其他任务完成后继续,yieldfrom用于将一个生成器的值传递给另一... 目录python yield与yield from的使用代码结构总结Python yield与yield

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

RabbitMQ消费端单线程与多线程案例讲解

《RabbitMQ消费端单线程与多线程案例讲解》文章解析RabbitMQ消费端单线程与多线程处理机制,说明concurrency控制消费者数量,max-concurrency控制最大线程数,prefe... 目录 一、基础概念详细解释:举个例子:✅ 单消费者 + 单线程消费❌ 单消费者 + 多线程消费❌ 多

Java中使用 @Builder 注解的简单示例

《Java中使用@Builder注解的简单示例》@Builder简化构建但存在复杂性,需配合其他注解,导致可变性、抽象类型处理难题,链式编程非最佳实践,适合长期对象,避免与@Data混用,改用@G... 目录一、案例二、不足之处大多数同学使用 @Builder 无非就是为了链式编程,然而 @Builder

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

MySql基本查询之表的增删查改+聚合函数案例详解

《MySql基本查询之表的增删查改+聚合函数案例详解》本文详解SQL的CURD操作INSERT用于数据插入(单行/多行及冲突处理),SELECT实现数据检索(列选择、条件过滤、排序分页),UPDATE... 目录一、Create1.1 单行数据 + 全列插入1.2 多行数据 + 指定列插入1.3 插入否则更

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

C#读写文本文件的多种方式详解

《C#读写文本文件的多种方式详解》这篇文章主要为大家详细介绍了C#中各种常用的文件读写方式,包括文本文件,二进制文件、CSV文件、JSON文件等,有需要的小伙伴可以参考一下... 目录一、文本文件读写1. 使用 File 类的静态方法2. 使用 StreamReader 和 StreamWriter二、二进

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语