LeNet跟LeNet5详解

2024-01-28 02:52
文章标签 详解 lenet lenet5

本文主要是介绍LeNet跟LeNet5详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 LeNet结构

主要是为了手写数字识别

具体结构讲解:从图中例子可得

1 先传入一个灰度图像尺寸为1x28x28,通道数为1,尺寸为28x28的灰度图像

2 第一层5x5卷积,经过公式 输入图像尺寸-卷积核尺寸+2padding/步长+1,(其中,因为是正方形,所以长宽都一样,直接一个式子得出)因为没有padding,输出特征图20个通道,24x24的尺寸。

3 经过第二层Pooling层,计算方式同上,得到20x12x12

4 在经过第三层5x5卷积,输出50x8x8,

5 第四层Polling,得到50x4x4

6 扁平化然后reshape为500x1的神经元用于全连接(也可以把上述得到的进行扁平化再进行一次全连接,800 -500)

7 然后Relu激活函数

8 全连接输出 10x1,代表十个数字的置信度

9 使用softmax来计算输出的值的在0-9的概率

(上述,其实上述每一层卷积都要使用Relu激活函数),下面代码复现再具体看

2 代码复现

import torch
import torch.nn as nnclass LeNet(nn.Module):def __init__(self) -> None:super().__init__()self.features = nn.Sequential(nn.Conv2d(in_channels=1, out_channels=20, kernel_size=5, stride=1, padding=0),nn.ReLU(),nn.MaxPool2d(kernel_size=(2, 2), stride=2),nn.Conv2d(in_channels=20, out_channels=50, kernel_size=5, stride=1, padding=0),nn.ReLU(),# nn.MaxPool2d(kernel_size=(2, 2), stride=2),nn.AdaptiveMaxPool2d((4, 4))  # 这个是为了不止让限制为28x28的输入图像)self.classify = nn.Sequential(nn.Linear(50 * 4 * 4, 500),nn.ReLU(),nn.Linear(500, 10))def forward(self, x):z = self.features(x)z = z.view(-1, 800)z = self.classify(z) return zif __name__ == '__main__':net = LeNet()img = torch.randn(2, 1, 28, 28)scores = net(img)print(scores)probs = torch.softmax(scores, dim=1)print(probs)

3 LeNet5

结构图

C1层

C1层是一个卷积层

将输入的1x32x32 通过5x5卷积,卷积成 6x28x28的feature map

S2层

S2层是一个下采样层,对C1层的进行下采样,把6x28x28池化成6x14x14

和max pooling和average pooling不一样, 在C1中每个单元的4个输入相加, 乘以一个可训练参数w, 再加上一个可训练偏置b, 结果通过sigmoid函数计算得到最终池化之后的值
就是说对于C1层,每个2x2的区域进行相加,类似如使用2x2卷积,步长为2,然后每个区域4个值乘以一个可训练参数w, 再加上一个可训练偏置b, 结果通过sigmoid函数计算得到最终池化之后的值

3 C3层

C3层是一个卷积层,使用的是5x5卷积,把6x14x14卷积成16x10x10

但是这个卷积跟平常卷积不一样,使用的是类似分组卷积的东西,不过也不一样,如下图

每次卷积核每次卷积不同的通道来提取特征,得到15个通道,比如第一个通道卷积他的前三层通道来输出第一个通道,以此类推

S4层

S4层是一个下采样层 (和S2一样),具体看S2,把16x10x10下采样为16x5x5

C5层

C5层是一个卷积层,使用5x5卷积,把16x5x5卷积成120x1x1,也就是用于下面全连接

6 F6 F7层

F6 7层是一个全连接层

把120x1最后全连接为10x1用来做置信度

这篇关于LeNet跟LeNet5详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/652259

相关文章

详解MySQL中DISTINCT去重的核心注意事项

《详解MySQL中DISTINCT去重的核心注意事项》为了实现查询不重复的数据,MySQL提供了DISTINCT关键字,它的主要作用就是对数据表中一个或多个字段重复的数据进行过滤,只返回其中的一条数据... 目录DISTINCT 六大注意事项1. 作用范围:所有 SELECT 字段2. NULL 值的特殊处

SQL BETWEEN 语句的基本用法详解

《SQLBETWEEN语句的基本用法详解》SQLBETWEEN语句是一个用于在SQL查询中指定查询条件的重要工具,它允许用户指定一个范围,用于筛选符合特定条件的记录,本文将详细介绍BETWEEN语... 目录概述BETWEEN 语句的基本用法BETWEEN 语句的示例示例 1:查询年龄在 20 到 30 岁

CSS place-items: center解析与用法详解

《CSSplace-items:center解析与用法详解》place-items:center;是一个强大的CSS简写属性,用于同时控制网格(Grid)和弹性盒(Flexbox)... place-items: center; 是一个强大的 css 简写属性,用于同时控制 网格(Grid) 和 弹性盒(F

spring中的ImportSelector接口示例详解

《spring中的ImportSelector接口示例详解》Spring的ImportSelector接口用于动态选择配置类,实现条件化和模块化配置,关键方法selectImports根据注解信息返回... 目录一、核心作用二、关键方法三、扩展功能四、使用示例五、工作原理六、应用场景七、自定义实现Impor

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

HTML5 搜索框Search Box详解

《HTML5搜索框SearchBox详解》HTML5的搜索框是一个强大的工具,能够有效提升用户体验,通过结合自动补全功能和适当的样式,可以创建出既美观又实用的搜索界面,这篇文章给大家介绍HTML5... html5 搜索框(Search Box)详解搜索框是一个用于输入查询内容的控件,通常用于网站或应用程

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可