LeNet跟LeNet5详解

2024-01-28 02:52
文章标签 详解 lenet lenet5

本文主要是介绍LeNet跟LeNet5详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 LeNet结构

主要是为了手写数字识别

具体结构讲解:从图中例子可得

1 先传入一个灰度图像尺寸为1x28x28,通道数为1,尺寸为28x28的灰度图像

2 第一层5x5卷积,经过公式 输入图像尺寸-卷积核尺寸+2padding/步长+1,(其中,因为是正方形,所以长宽都一样,直接一个式子得出)因为没有padding,输出特征图20个通道,24x24的尺寸。

3 经过第二层Pooling层,计算方式同上,得到20x12x12

4 在经过第三层5x5卷积,输出50x8x8,

5 第四层Polling,得到50x4x4

6 扁平化然后reshape为500x1的神经元用于全连接(也可以把上述得到的进行扁平化再进行一次全连接,800 -500)

7 然后Relu激活函数

8 全连接输出 10x1,代表十个数字的置信度

9 使用softmax来计算输出的值的在0-9的概率

(上述,其实上述每一层卷积都要使用Relu激活函数),下面代码复现再具体看

2 代码复现

import torch
import torch.nn as nnclass LeNet(nn.Module):def __init__(self) -> None:super().__init__()self.features = nn.Sequential(nn.Conv2d(in_channels=1, out_channels=20, kernel_size=5, stride=1, padding=0),nn.ReLU(),nn.MaxPool2d(kernel_size=(2, 2), stride=2),nn.Conv2d(in_channels=20, out_channels=50, kernel_size=5, stride=1, padding=0),nn.ReLU(),# nn.MaxPool2d(kernel_size=(2, 2), stride=2),nn.AdaptiveMaxPool2d((4, 4))  # 这个是为了不止让限制为28x28的输入图像)self.classify = nn.Sequential(nn.Linear(50 * 4 * 4, 500),nn.ReLU(),nn.Linear(500, 10))def forward(self, x):z = self.features(x)z = z.view(-1, 800)z = self.classify(z) return zif __name__ == '__main__':net = LeNet()img = torch.randn(2, 1, 28, 28)scores = net(img)print(scores)probs = torch.softmax(scores, dim=1)print(probs)

3 LeNet5

结构图

C1层

C1层是一个卷积层

将输入的1x32x32 通过5x5卷积,卷积成 6x28x28的feature map

S2层

S2层是一个下采样层,对C1层的进行下采样,把6x28x28池化成6x14x14

和max pooling和average pooling不一样, 在C1中每个单元的4个输入相加, 乘以一个可训练参数w, 再加上一个可训练偏置b, 结果通过sigmoid函数计算得到最终池化之后的值
就是说对于C1层,每个2x2的区域进行相加,类似如使用2x2卷积,步长为2,然后每个区域4个值乘以一个可训练参数w, 再加上一个可训练偏置b, 结果通过sigmoid函数计算得到最终池化之后的值

3 C3层

C3层是一个卷积层,使用的是5x5卷积,把6x14x14卷积成16x10x10

但是这个卷积跟平常卷积不一样,使用的是类似分组卷积的东西,不过也不一样,如下图

每次卷积核每次卷积不同的通道来提取特征,得到15个通道,比如第一个通道卷积他的前三层通道来输出第一个通道,以此类推

S4层

S4层是一个下采样层 (和S2一样),具体看S2,把16x10x10下采样为16x5x5

C5层

C5层是一个卷积层,使用5x5卷积,把16x5x5卷积成120x1x1,也就是用于下面全连接

6 F6 F7层

F6 7层是一个全连接层

把120x1最后全连接为10x1用来做置信度

这篇关于LeNet跟LeNet5详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/652259

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

SpringBoot日志级别与日志分组详解

《SpringBoot日志级别与日志分组详解》文章介绍了日志级别(ALL至OFF)及其作用,说明SpringBoot默认日志级别为INFO,可通过application.properties调整全局或... 目录日志级别1、级别内容2、调整日志级别调整默认日志级别调整指定类的日志级别项目开发过程中,利用日志

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MySQL8 密码强度评估与配置详解

《MySQL8密码强度评估与配置详解》MySQL8默认启用密码强度插件,实施MEDIUM策略(长度8、含数字/字母/特殊字符),支持动态调整与配置文件设置,推荐使用STRONG策略并定期更新密码以提... 目录一、mysql 8 密码强度评估机制1.核心插件:validate_password2.密码策略级

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar