【格密码基础】:补充LWE问题

2024-01-27 13:44
文章标签 基础 问题 补充 密码 lwe

本文主要是介绍【格密码基础】:补充LWE问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一. LWE问题的鲁棒性

二. LWE其他分布选择

三. 推荐文献

四. 附密码学人心中的顶会


一. LWE问题的鲁棒性

robustness,翻译为鲁棒性

已有的论文表明,及时敌手获取到部分关于秘密和error的信息,LWE问题依旧是困难的,这能体现出该问题的鲁棒性。

在2010年,Goldwasser等人发现,如果限定秘密的模长,或者将关于秘密的很难求逆的函数值(类似单向函数)告诉敌手,该问题的困难性和原始的LWE问题是一样的。在实际证明归约的过程中,维度n和误差率\alpha都是相对较小的。基于此理论可以设计一个对称的密码(symmetric-key encryption)方案,其允许密钥不太完美或者被泄露部分信息。

如果给出计算意义上很难求逆的单向函数值,2010年Dodis证明即使如此依旧可以基于LWE问题设计公钥密码方案。

在后来的工作中,人们陆续发现了LWE问题的鲁棒性提现:忽略维度和误差率(error rate)的变化,及时秘密和error的部分线性关系被泄露,LWE问题依旧是可证明安全的。

二. LWE其他分布选择

回顾LWE问题我们发现,其error的选择有两个要点:1.来源高斯分布;2.值相对较小。那么现在我们就在想,error能不能来自于其他分布,比如说在某个区间上的均匀分布呢?

在2013年,有两篇相关的工作,一个是Dottling-Muller,另一个是Micciancio-Peikert。这些人都证明了选择其他非高斯分布也是可以的。

选其他分布会比高斯分布更好吗?

从算法设计的层面来讲,像均匀分布比高斯分布更容易实现,所以在网络安全领域更加具有应用价值。

在2011年,Arora 和Ge发现,如果把error的尺寸范围设定为d,那么解决LWE问题的时间和空间复杂度为:

2^{d^2}

这显然给LWE问题的困难性证明带来了极大的挑战,好在这类攻击算法要求给定的LWE样本足够多。

接下里我们将简短解释LWE的样本个数如何影响问题的困难性。

对于非高斯分布的error(比如说可以选择均匀分布),哪怕error选取的空间很小,比如只能取0或1,也就是:

\lbrace 0,1\rbrace

只要给与敌手的样本个数为m是有上限的,那么LWE问题依旧是困难的。如果将该上限去掉的话,那么根据Arora-Ge攻击算法,LWE问题可直接被攻破。举几个简单的例子。

如果error只是简单的二进制,那么样本个数需要限定为:

如果error的尺寸放宽到:

那么样本个数也可以放宽到:

其实有点惊讶,当error只取0或1时,LWE问题也是困难的。但是其样本个数太少了,导致很难利用其设计密码系统。

已有的研究表明,先从足够大的高斯error中选取,再形成标准的LWE分布,然后再调整更大的维度,再将此分布作为后续search-LWE问题中的ai,那么形成的新问题在信息论(information-theoretically)上是无法解决的。此时的ai选择并不是真的随机分布,问题变得更加困难了。要想证明其安全性的话,也比较直接。因为标准的LWE分布与均匀分布之间是不可区分的,只要标准的decision-LWE问题困难,那么小-error版本的LWE问题也就是困难的。

三. 推荐文献

(1)总结LWE与SIS问题

D. Micciancio and C. Peikert. Hardness of SIS and LWE with small parameters. In CRYPTO,
pages 21–39. 2013.

(2)攻击LWE问题

S. Arora and R. Ge. New algorithms for learning in presence of errors. In ICALP (1), pages
403–415. 2011.

(3)证明LWE问题的鲁棒性

S. Ling, D. H. Phan, D. Stehle, and R. Steinfeld. Hardness of ´ k-LWE and applications in traitor
tracing. In CRYPTO, pages 315–334. 2014.

四. 附密码学人心中的顶会

(1)欧密

会议简称:EUROCRYPT

会议全称:International Conference on the Theory and Applications of Cryptographic Techniques

出版社:Springer

(2)美密

会议简称:CRYPTO

会议全称:International Cryptology Conference

出版社:Springer

(3)亚密

会议简称:ASIACRYPT

会议全称:Annual International Conference on the Theory and Application of Cryptology and Information Security

出版社:Springer

(4)CHES

会议简称:CHES

会议全称:International Conference on Cryptographic Hardware and Embedded Systems

出版社:Springer

(5)PKC

会议简称:PKC

会议全称:International Workshop on Practice and Theory in Public Key Cryptography

出版社:Springer

这篇关于【格密码基础】:补充LWE问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/650419

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map

nginx中端口无权限的问题解决

《nginx中端口无权限的问题解决》当Nginx日志报错bind()to80failed(13:Permissiondenied)时,这通常是由于权限不足导致Nginx无法绑定到80端口,下面就来... 目录一、问题原因分析二、解决方案1. 以 root 权限运行 Nginx(不推荐)2. 为 Nginx