Opencv(C++)学习 TBB与OPENMP的加速效果实验与ARM上的实践

2024-01-27 06:12

本文主要是介绍Opencv(C++)学习 TBB与OPENMP的加速效果实验与ARM上的实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景:在某个嵌入式上的图像处理项目功能开发告一段落,进入性能优化阶段。尝试从多线程上对图像处理过程进行加速。经过初步调研后,可以从OPENMP,TBB这两块进行加速,当前项目中有些算法已采用多线程加速,这次主要是对比以上两个加速模块与多线程加速效果的对比。现在PC上实验,然后再移植相关库。

环境准备:WIN11 ,VS2022 ,Debug 64
1、编译OPENCV。
经测试,编译过程是否选择TBB,MP相关选项对加载对应库和使用不影响。
2、安装TBB。(https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit-download.html)
VS配置之打开相关模块。打开TBB支持
打开openmp支持

对比过程:实验对比的对象包括:
1、基础FOR循环。
2、多线程。
3、原数据相同的TBB。
4、原数据独立的TBB。
5、原数据相同的OPENMP;
6、原数据独立的OPENMP;
测试数据为960*600的图像,测试内容为对该图进行大尺寸滤波操作。

测试代码:

#include <fstream>
#include <iostream>
#include <vector>
#include <opencv2/opencv.hpp>
#include <omp.h>
#include <future>
#include <thread>
#include <tbb/parallel_for.h>
#include <tbb/blocked_range.h>int main()
{const static int iCnt = 50;//循环次数Mat imori = imread("ori.png");cvtColor(imori, imori, COLOR_BGR2GRAY);Mat imoriMt, imoriMP, imoriTbb, imoriAMP[iCnt], imoriATBB[iCnt];imori.copyTo(imoriMt);imori.copyTo(imoriMP);imori.copyTo(imoriTbb);for (size_t i = 0; i < iCnt; i++){imori.copyTo(imoriAMP[i]);imori.copyTo(imoriATBB[i]);}Mat imRslt[iCnt], imRsltMt[iCnt], imRsltMP[iCnt], imRsltAMP[iCnt],imRsltTbb[iCnt], imRsltATBB[iCnt];std::vector<std::future<void>> vFutures(iCnt);double start1 = omp_get_wtime();{for (int i = 0; i < iCnt; i++){Mat kealMN = Mat::ones(25, 25, CV_32F);filter2D(imori, imRslt[i], CV_32F, kealMN, Point(-1, -1), 0, BORDER_REFLECT_101);}}double end1 = omp_get_wtime();cout << " cv Normal Time = " << (end1 - start1) << endl;double startMt = omp_get_wtime();int i = 0;for (auto iter = vFutures.begin(); iter != vFutures.end(); iter++, i++)*iter = std::async([](cv::Mat* imRslt, Mat imori, int i) {Mat kealMN = Mat::ones(33, 33, CV_32F); filter2D(imori, imRslt[i], CV_32F, kealMN, Point(-1, -1), 0, BORDER_REFLECT_101); }, imRsltMt, imoriMt, i);for (auto iter = vFutures.begin(); iter != vFutures.end(); iter++)iter->get();double endMt = omp_get_wtime();cout << " cv MThread Time = " << (endMt - startMt) << endl;double startMP = omp_get_wtime();
#pragma omp parallel num_threads(iCnt){
#pragma omp forfor (int i = 0; i < iCnt; i++){Mat kealMN = Mat::ones(33, 33, CV_32F);filter2D(imoriMP, imRsltMP[i], CV_32F, kealMN, Point(-1, -1), 0, BORDER_REFLECT_101);}}double endMP = omp_get_wtime();cout << " cv MP Time = " << (endMP - startMP) << endl;double startAMP = omp_get_wtime();
#pragma omp parallel num_threads(iCnt){
#pragma omp forfor (int i = 0; i < iCnt; i++){Mat kealMN = Mat::ones(33, 33, CV_32F);filter2D(imoriAMP[i], imRsltAMP[i], CV_32F, kealMN, Point(-1, -1), 0, BORDER_REFLECT_101);}}double endAMP = omp_get_wtime();cout << " cv AMP Time = " << (endAMP - startAMP) << endl;double startTbb = omp_get_wtime();tbb::parallel_for(tbb::blocked_range<size_t>(0, iCnt),[&](tbb::blocked_range<size_t> r) {for (size_t i = r.begin(); i < r.end(); i++){Mat kealMN = Mat::ones(33, 33, CV_32F);filter2D(imoriTbb, imRsltTbb[i], CV_32F, kealMN, Point(-1, -1), 0, BORDER_REFLECT_101);}});double endTbb = omp_get_wtime();cout << " cv Tbb Time = " << (endTbb - startTbb) << endl;double startATbb = omp_get_wtime();tbb::parallel_for(tbb::blocked_range<size_t>(0, iCnt),[&](tbb::blocked_range<size_t> r) {for (size_t i = r.begin(); i < r.end(); i++){Mat kealMN = Mat::ones(33, 33, CV_32F);filter2D(imoriATBB[i], imRsltATBB[i], CV_32F, kealMN, Point(-1, -1), 0, BORDER_REFLECT_101);}});double endATbb = omp_get_wtime();cout << " cv Atbb Time = " << (endATbb - startATbb) << endl;getchar();return 0;}

实验结果:
处理结果

实验结论:
1、OPENMP,TBB可以有效对并行处理进行加速,其效果与多线程处理基本持平。
2、OPENMP,TBB的优势在于代码编写相对简单,也不用考虑线程数的设置。
3、OPENMP,TBB的基础数据独立与否,对测试速度基本不影响(待定,有的同学说会导致各线程等待访问同一数据,引起耗时增加),也可能和PC的性能较好有关。但尽量去保证数据独立性,避免处理结果错误。

ARM实践 TODO

这篇关于Opencv(C++)学习 TBB与OPENMP的加速效果实验与ARM上的实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/649295

相关文章

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

C++11委托构造函数和继承构造函数的实现

《C++11委托构造函数和继承构造函数的实现》C++引入了委托构造函数和继承构造函数这两个重要的特性,本文主要介绍了C++11委托构造函数和继承构造函数的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录引言一、委托构造函数1.1 委托构造函数的定义与作用1.2 委托构造函数的语法1.3 委托构造函

C++11作用域枚举(Scoped Enums)的实现示例

《C++11作用域枚举(ScopedEnums)的实现示例》枚举类型是一种非常实用的工具,C++11标准引入了作用域枚举,也称为强类型枚举,本文主要介绍了C++11作用域枚举(ScopedEnums... 目录一、引言二、传统枚举类型的局限性2.1 命名空间污染2.2 整型提升问题2.3 类型转换问题三、C

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

C++链表的虚拟头节点实现细节及注意事项

《C++链表的虚拟头节点实现细节及注意事项》虚拟头节点是链表操作中极为实用的设计技巧,它通过在链表真实头部前添加一个特殊节点,有效简化边界条件处理,:本文主要介绍C++链表的虚拟头节点实现细节及注... 目录C++链表虚拟头节点(Dummy Head)一、虚拟头节点的本质与核心作用1. 定义2. 核心价值二