Opencv(C++)学习 TBB与OPENMP的加速效果实验与ARM上的实践

2024-01-27 06:12

本文主要是介绍Opencv(C++)学习 TBB与OPENMP的加速效果实验与ARM上的实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景:在某个嵌入式上的图像处理项目功能开发告一段落,进入性能优化阶段。尝试从多线程上对图像处理过程进行加速。经过初步调研后,可以从OPENMP,TBB这两块进行加速,当前项目中有些算法已采用多线程加速,这次主要是对比以上两个加速模块与多线程加速效果的对比。现在PC上实验,然后再移植相关库。

环境准备:WIN11 ,VS2022 ,Debug 64
1、编译OPENCV。
经测试,编译过程是否选择TBB,MP相关选项对加载对应库和使用不影响。
2、安装TBB。(https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit-download.html)
VS配置之打开相关模块。打开TBB支持
打开openmp支持

对比过程:实验对比的对象包括:
1、基础FOR循环。
2、多线程。
3、原数据相同的TBB。
4、原数据独立的TBB。
5、原数据相同的OPENMP;
6、原数据独立的OPENMP;
测试数据为960*600的图像,测试内容为对该图进行大尺寸滤波操作。

测试代码:

#include <fstream>
#include <iostream>
#include <vector>
#include <opencv2/opencv.hpp>
#include <omp.h>
#include <future>
#include <thread>
#include <tbb/parallel_for.h>
#include <tbb/blocked_range.h>int main()
{const static int iCnt = 50;//循环次数Mat imori = imread("ori.png");cvtColor(imori, imori, COLOR_BGR2GRAY);Mat imoriMt, imoriMP, imoriTbb, imoriAMP[iCnt], imoriATBB[iCnt];imori.copyTo(imoriMt);imori.copyTo(imoriMP);imori.copyTo(imoriTbb);for (size_t i = 0; i < iCnt; i++){imori.copyTo(imoriAMP[i]);imori.copyTo(imoriATBB[i]);}Mat imRslt[iCnt], imRsltMt[iCnt], imRsltMP[iCnt], imRsltAMP[iCnt],imRsltTbb[iCnt], imRsltATBB[iCnt];std::vector<std::future<void>> vFutures(iCnt);double start1 = omp_get_wtime();{for (int i = 0; i < iCnt; i++){Mat kealMN = Mat::ones(25, 25, CV_32F);filter2D(imori, imRslt[i], CV_32F, kealMN, Point(-1, -1), 0, BORDER_REFLECT_101);}}double end1 = omp_get_wtime();cout << " cv Normal Time = " << (end1 - start1) << endl;double startMt = omp_get_wtime();int i = 0;for (auto iter = vFutures.begin(); iter != vFutures.end(); iter++, i++)*iter = std::async([](cv::Mat* imRslt, Mat imori, int i) {Mat kealMN = Mat::ones(33, 33, CV_32F); filter2D(imori, imRslt[i], CV_32F, kealMN, Point(-1, -1), 0, BORDER_REFLECT_101); }, imRsltMt, imoriMt, i);for (auto iter = vFutures.begin(); iter != vFutures.end(); iter++)iter->get();double endMt = omp_get_wtime();cout << " cv MThread Time = " << (endMt - startMt) << endl;double startMP = omp_get_wtime();
#pragma omp parallel num_threads(iCnt){
#pragma omp forfor (int i = 0; i < iCnt; i++){Mat kealMN = Mat::ones(33, 33, CV_32F);filter2D(imoriMP, imRsltMP[i], CV_32F, kealMN, Point(-1, -1), 0, BORDER_REFLECT_101);}}double endMP = omp_get_wtime();cout << " cv MP Time = " << (endMP - startMP) << endl;double startAMP = omp_get_wtime();
#pragma omp parallel num_threads(iCnt){
#pragma omp forfor (int i = 0; i < iCnt; i++){Mat kealMN = Mat::ones(33, 33, CV_32F);filter2D(imoriAMP[i], imRsltAMP[i], CV_32F, kealMN, Point(-1, -1), 0, BORDER_REFLECT_101);}}double endAMP = omp_get_wtime();cout << " cv AMP Time = " << (endAMP - startAMP) << endl;double startTbb = omp_get_wtime();tbb::parallel_for(tbb::blocked_range<size_t>(0, iCnt),[&](tbb::blocked_range<size_t> r) {for (size_t i = r.begin(); i < r.end(); i++){Mat kealMN = Mat::ones(33, 33, CV_32F);filter2D(imoriTbb, imRsltTbb[i], CV_32F, kealMN, Point(-1, -1), 0, BORDER_REFLECT_101);}});double endTbb = omp_get_wtime();cout << " cv Tbb Time = " << (endTbb - startTbb) << endl;double startATbb = omp_get_wtime();tbb::parallel_for(tbb::blocked_range<size_t>(0, iCnt),[&](tbb::blocked_range<size_t> r) {for (size_t i = r.begin(); i < r.end(); i++){Mat kealMN = Mat::ones(33, 33, CV_32F);filter2D(imoriATBB[i], imRsltATBB[i], CV_32F, kealMN, Point(-1, -1), 0, BORDER_REFLECT_101);}});double endATbb = omp_get_wtime();cout << " cv Atbb Time = " << (endATbb - startATbb) << endl;getchar();return 0;}

实验结果:
处理结果

实验结论:
1、OPENMP,TBB可以有效对并行处理进行加速,其效果与多线程处理基本持平。
2、OPENMP,TBB的优势在于代码编写相对简单,也不用考虑线程数的设置。
3、OPENMP,TBB的基础数据独立与否,对测试速度基本不影响(待定,有的同学说会导致各线程等待访问同一数据,引起耗时增加),也可能和PC的性能较好有关。但尽量去保证数据独立性,避免处理结果错误。

ARM实践 TODO

这篇关于Opencv(C++)学习 TBB与OPENMP的加速效果实验与ARM上的实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/649295

相关文章

SpringBoot通过main方法启动web项目实践

《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

linux安装、更新、卸载anaconda实践

《linux安装、更新、卸载anaconda实践》Anaconda是基于conda的科学计算环境,集成1400+包及依赖,安装需下载脚本、接受协议、设置路径、配置环境变量,更新与卸载通过conda命令... 目录随意找一个目录下载安装脚本检查许可证协议,ENTER就可以安装完毕之后激活anaconda安装更

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用