曲线、柱状图、饼状图、分布图

2024-01-26 23:18

本文主要是介绍曲线、柱状图、饼状图、分布图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文:曲线、柱状图、饼状图、分布图

源代码下载地址:http://www.zuidaima.com/share/1550463664360448.htm

这篇分享,我主要想自己用, 在公司最近做funnel,biang客户 非要好看的报表,和各种钻取,他大爷的. 代码是开源的,可能大家没有听说过,不过我用这很顺手,2D 3D 效果都有. 曲线、柱状图、饼状图、分布图


源码截图:


这篇关于曲线、柱状图、饼状图、分布图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/648356

相关文章

利用matlab bar函数绘制较为复杂的柱状图,并在图中进行适当标注

示例代码和结果如下:小疑问:如何自动选择合适的坐标位置对柱状图的数值大小进行标注?😂 clear; close all;x = 1:3;aa=[28.6321521955954 26.2453660695847 21.69102348512086.93747104431360 6.25442246899816 3.342835958564245.51365061796319 4.87

PR曲线——一个更敏感的性能评估工具

在不均衡数据集的情况下,精确率-召回率(Precision-Recall, PR)曲线是一种非常有用的工具,因为它提供了比传统的ROC曲线更准确的性能评估。以下是PR曲线在不均衡数据情况下的一些作用: 关注少数类:在不均衡数据集中,少数类的样本数量远少于多数类。PR曲线通过关注少数类(通常是正类)的性能来弥补这一点,因为它直接评估模型在识别正类方面的能力。 精确率与召回率的平衡:精确率(Pr

使用matplotlib绘制散点图、柱状图和饼状图-学习篇

一、散点图 Python代码如下: num_points = 100x = np.random.rand(num_points) #x点位随机y = np.random.rand(num_points) #y点位随机colors = np.random.rand(num_points) #颜色随机sizes = 1000 * np.random.rand(num_points) # 大

Matlab中BaseZoom()函数实现曲线和图片的局部放大

BaseZoom工具下载链接: 链接:https://pan.baidu.com/s/1yItVSinh6vU4ImlbZW6Deg?pwd=9dyl 提取码:9dyl 下载完之后将工具包放置合适的路径下,并在matlab中“设置路径”中添加相应的路径; 注:可以先运行如下图片中的语句,看看是否报错;如果报如下错误,说明matlab未安装“Image Processing Toolbox”工

Echarts使用笔记--饼图,柱状图

开始做前端了,感觉自己是要变成全栈工程师了。。。 今天使用了echart,用之前觉得好高大上好厉害,肯定很复杂。用了以后才发现,使用起来超简单,当然,精通很难,里面的各种配置太多了,本文记录一下自己用到的东西。 echart使用 现在直接引用js文件就可以了 <script src="echarts.min.js"></script> echart组件需要在一个宽高固定的DOM里才能显示

基于yolov8的包装盒纸板破损缺陷测系统python源码+onnx模型+评估指标曲线+精美GUI界面

【算法介绍】 基于YOLOv8的包装盒纸板破损缺陷检测系统是一种高效、智能的解决方案,旨在提高生产线上包装盒纸板的质量检测效率与准确性。该系统利用YOLOv8这一前沿的深度学习模型,通过其强大的目标检测能力,能够实时识别并标记出包装盒纸板上的各种破损缺陷,如划痕、撕裂、孔洞等。 在系统中,首先需对包含破损缺陷的包装盒纸板图像进行数据采集和标注,形成训练数据集。随后,利用这些数据进行模型训练,使

echarts 多个3D柱状图

图片样式: 代码实现: <template><div :class="className" :style="{height:height,width:width}" /></template><script>require("echarts/theme/sakura"); // echarts themeexport default {props: {className: {typ

基于yolov8的NEU-DET钢材缺陷检测系统python源码+onnx模型+评估指标曲线+精美GUI界面

【算法介绍】 基于YOLOv8的NEU-DET钢材缺陷检测系统是一种创新的解决方案,旨在通过深度学习技术实现对钢材表面缺陷的自动检测和识别。该系统利用YOLOv8算法,该算法以其高效、准确和实时检测的特点著称。 NEU-DET数据集为该系统提供了丰富的训练资源,涵盖了热轧带钢的六种典型表面缺陷,包括轧制氧化皮、斑块、开裂、点蚀表面、内含物和划痕,每种缺陷均有大量样本,确保了模型的全面性和准确性

基于yolov8的电动车佩戴头盔检测系统python源码+onnx模型+评估指标曲线+精美GUI界面

【算法介绍】 基于YOLOv8的电动车佩戴头盔检测系统利用了YOLOv8这一先进的目标检测模型,旨在提高电动车骑行者的安全意识,减少因未佩戴头盔而导致的交通事故风险。YOLOv8作为YOLO系列的最新版本,在检测速度和精度上均进行了优化,特别适用于处理复杂场景中的小目标检测。 该系统通过收集并标注包含电动车骑行者图像的数据集,对YOLOv8模型进行训练,使其能够准确识别骑行者是否佩戴头盔。在实

【每日一题】LeetCode 84.柱状图中最大的矩形(栈、数组、单调栈)

【每日一题】LeetCode 84.柱状图中最大的矩形(栈、数组、单调栈) 题目描述 给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。求在该柱状图中,能够勾勒出来的矩形的最大面积。 这个题目和接雨水非常类似 点击跳转接雨水 LeetCode 40.接雨水 输入示例 输入:heights = [2,1,5,6,2,3] 输出:10 解释:最大的