用Python自动生成NBA历史巨星和现役球员生涯曲线

2024-01-26 07:18

本文主要是介绍用Python自动生成NBA历史巨星和现役球员生涯曲线,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文技术栈:

爬虫
Flask
pyecharts

1.序

之前写过一个用 python 自动生成球员职业生涯数据的程序,大家的反响很好,我也感到很欣慰。有问我怎么做的,如何学 python 的,也有提建议说集成到 web 里面的。

其实最开始我也是考虑到集成到 web 里面,但是由于时间关系,只是简单的做了一下,没想到引起了大家的关注和建议。所以这次就做了升级,集成到 web 中!

先看效果吧,比如在本地:

http://127.0.0.1:5800/retire/player?retire=乔丹&game=1

乔丹

http://127.0.0.1:5800/retire/player?retire=科比&game=1

科比

2.环境配置

.语言:Python3.编辑器:Pycharn.web框架:Flask.数据可视化:Pyecharts

项目主目录有个 requirements.txt 文件,里面是项目所需要的依赖包,你只需在终端输入以下命令

pip install -r requirements.txt

依赖包就会自动安装

3.功能升级

现升级完之后加入了以下功能:

3.1 将爬虫集成到web中,通过在浏览器输入球队名称获取球队下所有球员

http://127.0.0.1:5800/nba/team?name=猛龙

猛龙

勇士

3.2 支持现役所有球员生涯数据曲线,同时包括常规赛和季后赛数据

伦纳德常规赛和季后赛数据

http://127.0.0.1:5800/nba/player?game=0&player=kawhileonard-3568.html&color=yellow

伦纳德

当 game=0 的时候,获取常规赛数据,game=1 获取季后赛数据

不得不吐糟一下公众号只支持上传 2M 以下的 gifgif 大了又不支持,gif 小了又不清晰...
所以很多时候录完视频后裁剪成 gif 要花费十几二十分钟的时间,很痛苦...哪位朋友有好方法,还请联系我!

3.3 同时支持退役球星数据,比如篮球界第一老流氓 乔丹

乔丹常规赛

乔丹季后赛

3.4 支持更改背景颜色,同时支持图片下载

比如 魔术师约翰逊 的数据,在请求的时候加入 color 参数

http://127.0.0.1:5800/retire/player?retire=魔术师&game=1&color=yellow

魔术师

根据你传的 color 设置背景色,同时左上角有个下载按钮,点击可下载。是不是很强大!

4.代码讲解

4.1 Flask部分

请求地址:共有三个请求地址,代码所在 urls.py,可以根据个人喜好修改地址

urls

其中根据球队获取球员地址为 /nba/team/, 现役球员生涯数据为 /nba/player/, 退役球星数据为 /retire/player/

请求参数:代码所在 forms.py

参数

具体该传什么参数,代码在上面。其中 color 是可选的!

运行项目:项目主目录下有个 run.py 文件,直接运行即可!

4.2 爬虫部分

之前程序是抓的虎扑上面的数据,虎扑网有个 bug :每个球员都多了一条 2017 年汇总的数据(不清楚是干什么的),现已修正。而且虎扑不支持历史球员数据查询,所以现在加入了一个新网站,代码部分如下:

主要涉及到 html 提取技术,之前文章都有介绍,不详说了。

4.3 数据可视化部分

此部分主要是将 pyecharts 集成到 flask 中,集成的文件在 templates 中有些是默认文件,新增的部分是发送 ajax 请求,生成球员曲线。没有什么太多要说的,因为我之前的文章都有介绍过 pyecharts 的用法

了解更多内容,烦请关注公众号 Python编程与实战

这篇关于用Python自动生成NBA历史巨星和现役球员生涯曲线的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/646031

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录