蓝桥杯备赛 week 1 —— DP 背包问题

2024-01-26 02:36

本文主要是介绍蓝桥杯备赛 week 1 —— DP 背包问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

🌈前言🌈:

📁 01背包问题

分析:

dp数组求解:

优化:滚动数组:

📁 完全背包问题

📁 总结 


🌈前言🌈:

        这篇文章主要是准备蓝桥杯竞赛同学所写,为你更好准备蓝桥杯比赛涉及的算法知识点。不知道你是否苦恼于不知算法从何学起,苦恼于网上资料稀少,或者复杂难懂,这篇文章就是帮助这部分同学的。

        本篇文章适合基础较弱或零基础的同学,不会涉及晦涩难懂的公式,只是提供算法的思路,题解会从基础讲解,不会涉及大量复杂的证明,重要的是学废思想。

        背包问题分为很多种,因为是基础学习,所以只是讲解最为简单的两种背包问题,其他的背包问题基本都是变形,例如多重背包问题。

        01背包问题是有N种物品,每种物品就1件,让我们求在不超过背包容量M的前提下,拿到的物品总价值是多少。

        完全背包问题是有N种物品,每种物品无限件,求在不超过背包容量M的前提下,最大物品价值是多少。

📁 01背包问题

2. 01背包问题 - AcWing题库

分析:

        首先,我们拿到一道题目,首先要读懂题目。题目说,有N种物品,每种物品是1件。我们首先想到的肯定是暴力解法,通过不断的枚举来求出最大价值,例如第一件物品选不选,第二件物品选不选的思路来做。

        这么想是没有问题的,这就是回溯算法,但是有个弊端是时间复杂度很高,达到2^N,所以我们就得换个思路了。

dp数组求解:

        这里介绍一个B站up主大雪莱的一种方法,可以解决很多dp问题,即闫氏dp分析法。

        i 表示前 i 件物品 ; j 表示 当前体积  ;dp[ i ][ j ] 任取前 i 个物品在总体积不超过 j 的所有选法的最大值。( 重点理解!!!)

        我们通过枚举 j 从 0 到 M 求出,在当前 j 体积的情况下,选取前 i 件物品价值的最大值。

        所以背包问题就是递推的问题,由小到大求出最大价值。而题目就是让我们求前n个物品总体重不超过m的情况,所以我们最后输出dp[n][m]即可。

        举个例子,如下图所示。当前 i = 1 时,从第一件物品选择,总体积不超过 0,1,2 的情况下的最大值。

        如果,你理清了上面这两幅图片,你也就搞懂了01背包问题了。下面,我们来看一下代码。

#include<iostream>
#include <algorithm>using namespace std;const int N =1010;int n,m;          n表示物品数量,m表示背包容量
int w[N],v[N];    w表示体重,v表示价值
int dp[N][N];int main()
{cin>>n>>m;for(int i=1;i<=n;i++)cin>>w[i]>>v[i];for(int i=1;i<=n;i++)for(int j=0;j<=m;j++){if(j >= w[i])dp[i][j] = max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]);elsedp[i][j] = dp[i-1][j];}cout<<dp[n][m]<<endl;return 0;
}

优化:滚动数组:

        以上就是通过二维数组来实现01背包问题,在做题过程中,我们发现第 i 层的最大值,是通过第 i - 1层推导出来的。

        这里,我们就可以进行优化,将二维数组变为一维数组。因为 i 的作用就是标明前i个物品,而我们只是用了 i-1层 和 i层,这两层,因此就可以将上一层拷贝到下一层。

        如下图所示,我们可以定义一个一维数组,从后往前枚举。因为是一维数组,并且我们要进行递推,所以前面会影响后面,如果我们从往后枚举,就不是上一层的最大值了(重点理解!!

#include<iostream>
#include <algorithm>using namespace std;const int N =1010;int n,m;
int w[N],v[N];
int dp[N];int main()
{cin>>n>>m;for(int i=1;i<=n;i++)cin>>w[i]>>v[i];for(int i=1;i<=n;i++)for(int j=m;j>=w[i];j--){dp[j] = max(dp[j],dp[j-w[i]] + v[i]);}cout<<dp[m]<<endl;return 0;
}

        01背包问题,如果是初次接触,可能稍微有点繁琐,绕。所以需要自己多多画图,不断调试代码,画出每一层的每个选法的最大值方便更好的理解。

📁 完全背包问题

3. 完全背包问题 - AcWing题库

        本文寻寻渐进的,如果你还没有搞懂01背包问题可能还需要多花时间理解,对于完全背包问题,也只是对01背包优化后一维数组的变形。

        01背包的一维数组优化是从后往前遍历的,而完全背包问题则是从前往后遍历的。就这一点不同。

        如果从前往后遍历,就意味着第i个物品可以选多个,所以就可以比较上一层的dp[ j ] 和 再选依次第i个物品的总价值。因为完全背包问题每种物品可以选择多次。

#include <iostream>
#include <algorithm>
using namespace std;const int N = 1010;
int n,m;
int v[N],w[N];
int dp[N];int main()
{cin>>n>>m;for(int i=1;i<=n;i++)cin>>w[i]>>v[i];for(int i=1;i<=n;i++)for(int j=w[i];j<=m;j++)dp[j] =max(dp[j],dp[j-w[i]]+v[i]);cout<<dp[m]<<endl;return 0;
}

📁 总结 

        以上,就是dp问题中基础的背包问题,以01背包为例子,如何分析dp背包问题,以及讲解01背包问题的优化,从而讲解了完全背包问题。

        如果感觉对你有帮助,欢迎点赞,收藏,关注。Thanks♪(・ω・)ノ

这篇关于蓝桥杯备赛 week 1 —— DP 背包问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/645386

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map

nginx中端口无权限的问题解决

《nginx中端口无权限的问题解决》当Nginx日志报错bind()to80failed(13:Permissiondenied)时,这通常是由于权限不足导致Nginx无法绑定到80端口,下面就来... 目录一、问题原因分析二、解决方案1. 以 root 权限运行 Nginx(不推荐)2. 为 Nginx

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原