U-Boot源代码阅读笔记(二) —— 对lowlevel_init.S的分析

2024-01-25 17:08

本文主要是介绍U-Boot源代码阅读笔记(二) —— 对lowlevel_init.S的分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

U-Boot源代码阅读笔记(二) —— 对lowlevel_init.S的分析
本文主要分析与U-Boot启动过程相关的汇编代码lowlevel_init.S,目标平台以PXA270为例。
文件位于board/myboard/lowlevel_init.S,主要执行内存相关的初始化
  • 把链接寄存器LR(即R14)的值转存到寄存器R10中,以便lowlevel_init完成后恢复执行
.globl lowlevel_init
lowlevel_init:
    mov      r10, lr 
  • 按顺序初始化GPIO寄存器: GPSR GPCR GRER GFER GPDR GAFR PSSR
/* Set up GPIO pins first */
   ldr      r0,   =GPSR0
   ldr      r1,   =CFG_GPSR0_VAL
   str      r1,   [r0]
   .....
  • 初始化内存控制器
/* Initlialize Memory Controller */
   @ skip memory init if we're run in ram(must be a JTAG run)
   mov r0, pc
   ldr r1, =0xa0000000
   and r0, r0, r1    /* 把当前PC寄存器的值与0xa0000000逻辑与*/
   cmp r0, r1        /* 如果结果等于0xa0000000,说明uboot是从RAM启动的 */
   beq mem_init_done    /* 那么就需要跳过RAM初始化, 直接跳转到mem_init_done执行 */

/* 具体的初始化操作与目标板有很大相关性,下面以我的PXA270开发板为例 */

mem_init:
   @ get memory controller base address
   ldr     r1,  =MEMC_BASE    /* 内存控制器基地址 */
  • 初始化内存控制器 Step 1

@****************************************************************************
@  Step 1
@
   
   @ Step 1a
    /* Initlialize Static Memory Control register */
    /*  初始化MSCx寄存器需要设置 */
    /* RBUFFx —— Return Data Buffer vs. Streaming Behavior */
    /* RRRx —— ROM/SRAM Recovery Time */
    /* RDNx —— ROM Delay Next Access */
    /* RDFx —— The ROM Delay First Access */
    /* RBWx —— ROM Bus Width */
    /* RTx —— ROM Type */
   @ write msc0, read back to ensure data latches
   ldr     r2,   =CFG_MSC0_VAL
   str     r2,   [r1, #MSC0_OFFSET]
   ldr     r2,   [r1, #MSC0_OFFSET]    /* Ensure that the new value has been accepted and programmed */
   ......

   @ Step 1b
    /* 配置PCMCIA和CF需要设置下面这些寄存器 */
   @ MECR —— Expansion Memory (PC Card/CompactFlash) Bus Configuration register 
   @ MCMEMx —— PC Card Interface Common Memory Space Socket 0/1 Timing Configuration register
   @ MCATTx —— PC Card Interface Attribute Space Socket 0/1 Timing Configuration register
   @ MCIOx —— PC Card Interface I/O Space Socket 0/1 Timing Configuration register

   @ Step 1c
   @ fly-by-dma is defeatured on this part
   @ write flycnfg —— Fly-by DMA DVAL<1:0> polarities
   @ldr     r2,  =CFG_FLYCNFG_VAL
   @str     r2,  [r1, #FLYCNFG_OFFSET]

   @ Step 1d
   @ fetch platform value of mdcnfg —— SDRAM Configuration register
   @
   ldr     r2,  =CFG_MDCNFG_VAL

   @ disable all sdram banks
   @
   bic     r2,  r2,  #(MDCNFG_DE0 | MDCNFG_DE1)
   bic     r2,  r2,  #(MDCNFG_DE2 | MDCNFG_DE3)
   str r2, [r1, #MDCNFG_OFFSET]

   @ Step 1e
   @ write MDREFR —— SDRAM Refresh Control register
   ldr r3, = CFG_MDREFR_VAL
   ldr r2, = 0xFFF    /* DRI mask */
   and r3, r3, r2
   ldr r4, [r1, #MDREFR_OFFSET]    /* reset value */
   bic r4, r4, r2    /* clear DRI field  —— SDRAM Refresh Interval for All Partitions */
   orr r4, r4, r3
   orr r4, r4, #MDREFR_K0RUN    /* SDCLK0 Run Control/Status */
   bic r4, r4, #MDREFR_K0DB2    /* SDCLK0 Divide by 2 Control/Status */
   bic r4, r4, #MDREFR_K0DB4    /* SDCLK0 Divide by 4 Control/Status */
   bic r4, r4, #MDREFR_K2FREE   /* SDCLK<2> Free-Running Control */
   bic r4, r4, #MDREFR_K1FREE
   bic r4, r4, #MDREFR_K0FREE
   orr r4, r4, #MDREFR_SLFRSH  /* SDRAM Self-Refresh Control/Status, Self-refresh enabled */
   /* write back MDREFR */
   str r4, [r1, #MDREFR_OFFSET]
  • 初始化内存控制器 Step 2
@ Step 2
   @ Configure synchronus flash memory
  • 初始化内存控制器 Step 3
@ Step 3
   @ Configure SDRAM
   ldr r2, =CFG_MDREFR_VAL
   bic r2, #MDREFR_APD    /* SDRAM/Synchronous Static Memory Auto-Power-Down Enable */
   str r2, [r1, #MDREFR_OFFSET]
   ldr r3, [r1, #MDREFR_OFFSET]        @ read back to make sure write action completed

  • 初始化内存控制器 Step 4
@ Step 4
   @ write initial value of mdcnfg, w/o enabling sdram banks
   @
   ldr r2, =CFG_MDCNFG_VAL
   bic r2,  r2,  #(MDCNFG_DE0 | MDCNFG_DE1)
   bic r2,  r2,  #(MDCNFG_DE2 | MDCNFG_DE3)
   str r2, [r1, #MDCNFG_OFFSET]

   @ldr r2, = CFG_MDREFR_VAL
   @str r2, [r1, #MDREFR_OFFSET]
  • 初始化内存控制器 Step 5
@ Step 5
   @ pause for 200 uSecs
   @
   ldr r3, =OSCR       @ reset the OS Timer Count to zero
   mov r2, #0
   str r2, [r3]
   ldr r4, =0x300            @ really 0x2E1 is about 200usec, so 0x300 should be plenty ——3.25MHz clock
1:
   ldr r2, [r3]    /* r2读OS Timer Count*/
   cmp r4, r2    /* 比较OS Timer Count和r4 */
   bgt 1b        /* 如果时间没到就循环 */
  • 初始化内存控制器 Step 6
@ Step 6
   @ Disable XScale Data Cache
   mov    r0, #0x78                @turn everything off
   mcr    p15, 0, r0, c1, c0, 0      @(caches off, MMU off, etc.)    /* 设置协处理器P15 */
  • 初始化内存控制器 Step 7 - 11
@ Step 7
   @ Access memory *not yet enabled* for CBR refresh cycles (8) *NOTE: hardware reset only
   @ - CBR is generated for all banks

   ldr     r2, =CFG_DRAM_BASE
   str     r2, [r2]
   str     r2, [r2]
   str     r2, [r2]
   str     r2, [r2]
   str     r2, [r2]
   str     r2, [r2]
   str     r2, [r2]
   str     r2, [r2]

   @ Step 8
   @ Enable data cache

   @ Step 9
   @ Enable SDRAM

   @fetch current mdcnfg value
   ldr     r3,  [r1, #MDCNFG_OFFSET]
   orr     r3,  r3,  #MDCNFG_DE0    /* enable sdram bank0 */

   @write back mdcnfg, enabling the sdram bank(s)
   str     r3,  [r1, #MDCNFG_OFFSET]

   @ Step 10
   @ write mdmrs —— SDRAM Mode Register Set Configuration Register
   @
   ldr     r2,  =CFG_MDMRS_VAL
   str     r2,  [r1, #MDMRS_OFFSET]

   @ Step 11
   @ Enable MDREFR[APD] optionally
   ldr r2, =CFG_MDREFR_VAL
   str r2, [r1, #MDREFR_OFFSET]
  • Done Memory Init
mem_init_done:

   @********************************************************************
   @ Disable (mask) all interrupts at the interrupt controller
   @

   @ clear the interrupt level register (use IRQ, not FIQ)
   @
   mov     r1, #0
   ldr     r2,  =ICLR
   str     r1,  [r2]

   @ Set interrupt mask register
   @
   ldr     r1,  =CFG_ICMR_VAL    /* set ICMR = 0, no interrupts enabled */
   ldr     r2,  =ICMR
   str     r1,  [r2]

   @ ********************************************************************
   @ Disable the peripheral clocks, and set the core clock
   @

    @ Turn Off ALL on-chip peripheral clocks for re-configuration
    @
    ldr     r1,  =CKEN    /*clock enable register */
    mov     r2,  #0
    str     r2,  [r1]

   @ set core clocks
   @
   ldr     r1,  =CCCR    /* core clock configuration register */
   ldr     r2,  [r1, #0]
   ldr r3, =(CCCR_L_MASK | CCCR_2N_MASK)
   bic r2, r2, r3
   /* Run-Mode-to-Oscillator Ratio (L) creates the nominal run mode frequency by multiplying the 13-MHz processor oscillator by L. */
   /* Turbo-Mode-to-Run-Mode Ratio (N) creates the nominal turbo-mode frequency by multiplying the run-mode frequency by N. */
   /* core freq: Normal 208MHz, Turbo 312MHz */
   ldr r3, =(16 | 3<<7)    /* Turbo-Mode-to-Run-Mode Ratio, N = 3/2 */
   orr r2, r2, r3              /*  Run-Mode-to-Oscillator Ratio = 16*13 MHz,  */
   str     r2,  [r1]

#ifdef ENABLE32KHZ
   @ enable the 32Khz oscillator for RTC and PowerManager
   @
   ldr     r1,  =OSCC    /* oscillator configuration register */
   mov     r2,  #OSCC_OON    /* 32.768kHz OON (write-once only bit) */
   str     r2,  [r1]

   @ NOTE:  spin here until OSCC.OOK get set,
   @        meaning the PLL has settled.
   @
60:
   ldr     r2, [r1]
   ands    r2, r2, #1    /* r2 = r2 & 0x1, 取出最低位数据 */
   beq     60b
#endif

    @ Turn on needed clocks
    @
   ldr     r1,  =CKEN
   ldr     r2,  =CFG_CKEN_VAL
   str     r2,  [r1]
  • lowlevel_init完成
   mov   pc, r10    /* 恢复链接寄存器的值到PC,返回start.S调用lowlevel_init处继续执行 */

@ End lowlevel_init

这篇关于U-Boot源代码阅读笔记(二) —— 对lowlevel_init.S的分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/643979

相关文章

Spring Boot 处理带文件表单的方式汇总

《SpringBoot处理带文件表单的方式汇总》本文详细介绍了六种处理文件上传的方式,包括@RequestParam、@RequestPart、@ModelAttribute、@ModelAttr... 目录方式 1:@RequestParam接收文件后端代码前端代码特点方式 2:@RequestPart接

Springboot请求和响应相关注解及使用场景分析

《Springboot请求和响应相关注解及使用场景分析》本文介绍了SpringBoot中用于处理HTTP请求和构建HTTP响应的常用注解,包括@RequestMapping、@RequestParam... 目录1. 请求处理注解@RequestMapping@GetMapping, @PostMappin

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

Spring Boot基于 JWT 优化 Spring Security 无状态登录实战指南

《SpringBoot基于JWT优化SpringSecurity无状态登录实战指南》本文介绍如何使用JWT优化SpringSecurity实现无状态登录,提高接口安全性,并通过实际操作步骤... 目录Spring Boot 实战:基于 JWT 优化 Spring Security 无状态登录一、先搞懂:为什

C++ scoped_ptr 和 unique_ptr对比分析

《C++scoped_ptr和unique_ptr对比分析》本文介绍了C++中的`scoped_ptr`和`unique_ptr`,详细比较了它们的特性、使用场景以及现代C++推荐的使用`uni... 目录1. scoped_ptr基本特性主要特点2. unique_ptr基本用法3. 主要区别对比4. u

Spring Boot 集成 mybatis核心机制

《SpringBoot集成mybatis核心机制》这篇文章给大家介绍SpringBoot集成mybatis核心机制,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值... 目录Spring Boot浅析1.依赖管理(Starter POMs)2.自动配置(AutoConfigu

Spring Boot/Spring MVC核心注解的作用详解

《SpringBoot/SpringMVC核心注解的作用详解》本文详细介绍了SpringBoot和SpringMVC中最常用的15个核心注解,涵盖了请求路由映射、参数绑定、RESTfulAPI、... 目录一、Spring/Spring MVC注解的核心作用二、请求映射与RESTful API注解系列2.1

Nginx内置变量应用场景分析

《Nginx内置变量应用场景分析》Nginx内置变量速查表,涵盖请求URI、客户端信息、服务器信息、文件路径、响应与性能等类别,这篇文章给大家介绍Nginx内置变量应用场景分析,感兴趣的朋友跟随小编一... 目录1. Nginx 内置变量速查表2. 核心变量详解与应用场景3. 实际应用举例4. 注意事项Ng

Java多种文件复制方式以及效率对比分析

《Java多种文件复制方式以及效率对比分析》本文总结了Java复制文件的多种方式,包括传统的字节流、字符流、NIO系列、第三方包中的FileUtils等,并提供了不同方式的效率比较,同时,还介绍了遍历... 目录1 背景2 概述3 遍历3.1listFiles()3.2list()3.3org.codeha

Spring Boot整合Redis注解实现增删改查功能(Redis注解使用)

《SpringBoot整合Redis注解实现增删改查功能(Redis注解使用)》文章介绍了如何使用SpringBoot整合Redis注解实现增删改查功能,包括配置、实体类、Repository、Se... 目录配置Redis连接定义实体类创建Repository接口增删改查操作示例插入数据查询数据删除数据更