使用Stanford NLP工具实现中文命名实体识别

2024-01-25 07:48

本文主要是介绍使用Stanford NLP工具实现中文命名实体识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、     系统配置

Eclipseluna、 JDK 1.8+

二、分词介绍

使用斯坦福大学的分词器,下载地址http://nlp.stanford.edu/software/segmenter.shtml,从上面链接中下载stanford-segmenter-2014-10-26,解压之后,如下图所示



data目录下有两个gz压缩文件,分别是ctb.gz和pku.gz,其中CTB:宾州大学的中国树库训练资料 ,PKU:中国北京大学提供的训练资料。


三、     NER

使用斯坦福大学的NER,下载地址:http://nlp.stanford.edu/software/CRF-NER.shtml,在该页面下分别下载stanford-ner-2014-10-26和stanford-ner-2012-11-11-chinese两个包。

解压后分别可以看到:




同时下载commons-io-2.4.jar、commons-lang3-3.3.2.jar、junit-4.10.jar三个Java包。

四、     中文命名实体识别

新建Java项目,将data目录拷贝到项目根路径下,再把stanford-ner-2012-11-11-chinese解压的内容全部拷贝到classifiers文件夹下,将第三步中的三个Java包以及stanford NER和分词器的Java包都导入classpath中,然后,在:http://nlp.stanford.edu/software/ corenlp.shtml下载stanford-corenlp-full-2014-10-31,将解压之后的stanford-corenlp-3.5.0也加入到classpath之中。将stanfordner中src添加到项目目录下,并添加一下两个代码:


ExtractDemo.java

importedu.stanford.nlp.ie.AbstractSequenceClassifier;

importedu.stanford.nlp.ie.crf.CRFClassifier;

importedu.stanford.nlp.ling.CoreLabel;

 

/*

ClassNameExtractDemo

加载NER模块

*/

   publicclassExtractDemo

   {

   privatestaticAbstractSequenceClassifier<CoreLabel>ner;

   publicExtractDemo()

      {

      InitNer();

      }

   publicvoidInitNer()

   {

      String serializedClassifier ="classifiers/chinese.misc.distsim.crf.ser.gz";//chinese.misc.distsim.crf.ser.gz

      if (ner ==null)

         {

         ner =CRFClassifier.getClassifierNoExceptions(serializedClassifier);

         }

   }

   public StringdoNer(Stringsent)

      {

      returnner.classifyWithInlineXML(sent);

      }

   publicstaticvoid main(Stringargs[])

      {

      String str = "今天下雨,不去打球。";

      ExtractDemoextractDemo =newExtractDemo();    System.out.println(extractDemo.doNer(str));

      System.out.println("Complete!");

      }

}

 

 

ZH_SegDemo.java

 

importjava.io.File;

importjava.io.IOException;

importjava.util.Properties;

importorg.apache.commons.io.FileUtils;

importedu.stanford.nlp.ie.crf.CRFClassifier;

importedu.stanford.nlp.ling.CoreLabel;

/*

* ClassNameZH_SegDemo

* Description 使用StanfordCoreNLP进行中文实体识别

*/

public class ZH_SegDemo {

public staticCRFClassifier<CoreLabel>segmenter;

static {

// 设置一些初始化参数

Propertiesprops = new Properties();

props.setProperty("sighanCorporaDict","data");

props.setProperty("serDictionary","data/dict-chris6.ser.gz");

props.setProperty("inputEncoding","UTF-8");

props.setProperty("sighanPostProcessing","true");

segmenter = newCRFClassifier<CoreLabel>(props);

segmenter.loadClassifierNoExceptions("data/ctb.gz",props);

segmenter.flags.setProperties(props);

}

public static String doSegment(String sent) {

String[] strs =(String[]) segmenter.segmentString(sent).toArray();

StringBufferbuf= new StringBuffer();

for (String s :strs) {

buf.append(s +" ");

}

System.out.println("segmentedres: " + buf.toString());

returnbuf.toString();

}

public staticvoid main(String[] args) {

try {

StringreadFileToString = FileUtils.readFileToString(newFile("IFENG-8.txt"));

StringdoSegment = doSegment(readFileToString);

System.out.println(doSegment);

ExtractDemoextractDemo= new ExtractDemo();

System.out.println(extractDemo.doNer(doSegment));

System.out.println("Complete!");

} catch(IOException e) {

e.printStackTrace();

}

}

}

最后项目结构如下:


运行结果如下:


这篇关于使用Stanford NLP工具实现中文命名实体识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/642575

相关文章

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统