基于Bidirectional AttentionFlow的机器阅读理解实践

2024-01-25 07:18

本文主要是介绍基于Bidirectional AttentionFlow的机器阅读理解实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

机器阅读是实现机器认知智能的重要技术之一。机器阅读任务主要有两大类:完形填空和阅读理解。

(1)完型填空类型的问答,简单来说就是一个匹配问题。问题的求解思路基本是:
  1) 获取文档中词的表示
  2) 获取问题的表示

  3) 计算文档中词和问题的匹配得分,选出最优

(2)文本段类型的问答,与完型填空类型的问答,在思想上非常类似,主要区别在于:完形填空的目标是文档中的一个词,文本阅读理解的目标是文档中的两个位置,分别用来标志答案的起点和终点。目标的差别带来了网络模型上一些差别。

继上次复现了r-net的方案之后,现将之前复现过的Bidirectional AttentionFlow (经典的阅读理解模型)也进行记录一下。


1、基本原理

BiDAF模型最大的特点是在interaction层引入了双向注意力机制,计算Query2Context和Context2Query两种注意力,并基于注意力计算query-aware的原文表示。


模型由这样几个层次组成:

(1)Character Embedding Layer使用char-CNN将word映射到固定维度的向量空间;

(2)Word Embedding Layer使用(pre-trained)word embedding将word映射到固定维度的向量空间;

从上图可以看出,该模型同时使用了字符的词向量和词向量两种层次的嵌入表示。

(3)Contextual Embedding Layer将上面的到的两个word vector拼接,然后输入LSTM中进行context embedding;

(4)Attention Flow Layer将passage embedding和question embedding结合,使用Context-to-query Attention 和Query-to-contextAttention得到word-by-word attention;

(5)Modeling Layer将上一层的输出作为bi-directional RNN的输入,得到Modeling结果M;

(6)Output Layer使用M分类得到passage的起始位置,然后使用M输入bi-directional LSTM得到M2,再使用M2分类得到passage的中止位置作为answer。

2、实验测试

(1)启动训练,加载词向量模型


(2)训练过程截图

(3)训练后的测试结果,如下所示,可以看到F1的值可以达到74.9%

这篇关于基于Bidirectional AttentionFlow的机器阅读理解实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/642484

相关文章

Spring Boot集成SLF4j从基础到高级实践(最新推荐)

《SpringBoot集成SLF4j从基础到高级实践(最新推荐)》SLF4j(SimpleLoggingFacadeforJava)是一个日志门面(Facade),不是具体的日志实现,这篇文章主要介... 目录一、日志框架概述与SLF4j简介1.1 为什么需要日志框架1.2 主流日志框架对比1.3 SLF4

Spring Boot 常用注解详解与使用最佳实践建议

《SpringBoot常用注解详解与使用最佳实践建议》:本文主要介绍SpringBoot常用注解详解与使用最佳实践建议,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、核心启动注解1. @SpringBootApplication2. @EnableAutoConfi

spring IOC的理解之原理和实现过程

《springIOC的理解之原理和实现过程》:本文主要介绍springIOC的理解之原理和实现过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、IoC 核心概念二、核心原理1. 容器架构2. 核心组件3. 工作流程三、关键实现机制1. Bean生命周期2.

Redis实现分布式锁全解析之从原理到实践过程

《Redis实现分布式锁全解析之从原理到实践过程》:本文主要介绍Redis实现分布式锁全解析之从原理到实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、背景介绍二、解决方案(一)使用 SETNX 命令(二)设置锁的过期时间(三)解决锁的误删问题(四)Re

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Spring Boot 整合 SSE的高级实践(Server-Sent Events)

《SpringBoot整合SSE的高级实践(Server-SentEvents)》SSE(Server-SentEvents)是一种基于HTTP协议的单向通信机制,允许服务器向浏览器持续发送实... 目录1、简述2、Spring Boot 中的SSE实现2.1 添加依赖2.2 实现后端接口2.3 配置超时时

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

深入理解Apache Kafka(分布式流处理平台)

《深入理解ApacheKafka(分布式流处理平台)》ApacheKafka作为现代分布式系统中的核心中间件,为构建高吞吐量、低延迟的数据管道提供了强大支持,本文将深入探讨Kafka的核心概念、架构... 目录引言一、Apache Kafka概述1.1 什么是Kafka?1.2 Kafka的核心概念二、Ka