Excel·VBA时间范围筛选及批量删除整行

2024-01-25 05:20

本文主要是介绍Excel·VBA时间范围筛选及批量删除整行,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

看到一个帖子《excel吧-筛选开始时间,结束时间范围内的所有记录》,根据条件表中的开始时间和结束时间构成的时间范围,对数据表中的开始时间和结束时间范围内的数据进行筛选

目录

    • 批量删除整行,整体删除
    • 批量删除整行,分段删除
      • 不同分段行数速度对比

  • 数据举例
    条件表中,开始时间为随机生成,结束时间为开始时间依次增加180、360天。20人,每人50个场所,共1000行条件时间范围(每人的每个地点只有一行时间范围)
    数据表中,开始时间为随机生成,结束时间为开始时间依次增加1-12个月。共50万行时间范围
    在这里插入图片描述

批量删除整行,整体删除

采用《Excel·VBA指定条件删除整行整列》先Union行再删除的方法可大幅提高速度

Sub 时间范围筛选()Dim dict As Object, rng As Range, arr, i&, k$Set dict = CreateObject("scripting.dictionary"): tm = TimerApplication.ScreenUpdating = False  '关闭屏幕更新,加快程序运行arr = Worksheets("条件").[a1].CurrentRegionFor i = 2 To UBound(arr)k = arr(i, 1) & "_" & arr(i, 2)dict(k) = Array(CDbl(arr(i, 3)), CDbl(arr(i, 4)))NextWorksheets("数据").Copy after:=Sheets(Sheets.Count)With ActiveSheet.Name = "筛选结果": arr = .[a1].CurrentRegion: ReDim brr(1 To UBound(arr))For i = 2 To UBound(arr)k = arr(i, 1) & "_" & arr(i, 2)If Not dict.Exists(k) Then  '不存在的直接删除If rng Is Nothing ThenSet rng = .Rows(i)ElseSet rng = Union(rng, .Rows(i))End IfElse'符合条件时间范围If Not (dict(k)(0) <= CDbl(arr(i, 3)) And CDbl(arr(i, 4)) <= dict(k)(1)) ThenIf rng Is Nothing ThenSet rng = .Rows(i)ElseSet rng = Union(rng, .Rows(i))End IfEnd IfEnd IfNextIf Not rng Is Nothing Then rng.DeleteEnd WithApplication.ScreenUpdating = TrueDebug.Print "筛选完成,用时" & Format(Timer - tm, "0.00")  '耗时
End Sub
  • 筛选结果:运行几个小时也未能生成结果
    这显然不合理,就算是50万行的数据,使用字典也不可能耗时如此之久
    Union行的操作全部注释改为计数后可以发现,遍历50万行并判断是否符合条件时间范围,仅用时2.25秒,而之前的经验都是“先Union行再删除的方法”比“倒序循环依次删除整行的方法”速度更快,但本例中Union行的操作却很慢,那么就是行数太多导致反复Union行消耗太多时间

批量删除整行,分段删除

既然上面的代码运行缓慢可能是“反复Union行消耗太多时间”,那么就应该试试看倒序分段删除

Sub 时间范围筛选2()Dim dict As Object, rng As Range, arr, brr, i&, j&, k$, x&Set dict = CreateObject("scripting.dictionary"): tm = TimerApplication.ScreenUpdating = False  '关闭屏幕更新,加快程序运行arr = Worksheets("条件").[a1].CurrentRegionFor i = 2 To UBound(arr)k = arr(i, 1) & "_" & arr(i, 2)dict(k) = Array(CDbl(arr(i, 3)), CDbl(arr(i, 4)))NextWorksheets("数据").Copy after:=Sheets(Sheets.Count)With ActiveSheet.Name = "筛选结果": arr = .[a1].CurrentRegion: ReDim brr(1 To UBound(arr))For i = 2 To UBound(arr)k = arr(i, 1) & "_" & arr(i, 2)If Not dict.Exists(k) Then  '不存在的直接删除j = j + 1: brr(j) = iElse'符合条件时间范围If Not (dict(k)(0) <= CDbl(arr(i, 3)) And CDbl(arr(i, 4)) <= dict(k)(1)) Thenj = j + 1: brr(j) = iEnd IfEnd IfNextFor i = j To 1 Step -1  '倒序分段删除x = x + 1If rng Is Nothing ThenSet rng = .Rows(brr(i))ElseSet rng = Union(rng, .Rows(brr(i)))End IfIf x = 1000 Then rng.Delete: Set rng = Nothing: x = 0NextIf Not rng Is Nothing Then rng.DeleteEnd WithApplication.ScreenUpdating = TrueDebug.Print "筛选完成,用时" & Format(Timer - tm, "0.00")  '耗时
End Sub
  • 筛选结果:成功生成符合条件时间范围的筛选结果,共保留57668行数据
    在这里插入图片描述

不同分段行数速度对比

分段行数1005001000500010000
耗时秒数697.84643629.43687888.17

可以发现,分段在1万行以内时,运行速度差异还不明显,而总共需要删除的行数为442332行,因此以上“行数太多导致反复Union行消耗太多时间”的猜测是对的

而如果将筛选条件改为,时间范围完全不重叠

'条件开始时间 > 筛选结束时间,或条件结束时间 < 筛选开始时间
If dict(k)(0) > CDbl(arr(i, 4)) Or dict(k)(1) < CDbl(arr(i, 3)) Then

总共需要删除的行数为242931行时,可能是需要删除的行与行之间分散的更稀碎,导致比上面的删除442332行耗时差异更加明显,测试如下图

分段行数1005001000500010000
耗时秒数1233.981234.91268.611939.344079.09

需要删除的行数变少,但在同样的分段下不仅消耗时间更多,而且分段为1万行时消耗时间增长率也更高,那么可以得出结论,不仅反复Union行消耗太多时间,而且行与行之间太分散也会消耗更多时间

这篇关于Excel·VBA时间范围筛选及批量删除整行的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/642213

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

MySQL按时间维度对亿级数据表进行平滑分表

《MySQL按时间维度对亿级数据表进行平滑分表》本文将以一个真实的4亿数据表分表案例为基础,详细介绍如何在不影响线上业务的情况下,完成按时间维度分表的完整过程,感兴趣的小伙伴可以了解一下... 目录引言一、为什么我们需要分表1.1 单表数据量过大的问题1.2 分表方案选型二、分表前的准备工作2.1 数据评估