使用Python中的Featuretools实现自动化特征工程的实用指南

本文主要是介绍使用Python中的Featuretools实现自动化特征工程的实用指南,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

任何参与机器学习黑客马拉松和竞赛的人都知道特征工程的重要性。自从我意识到它具有巨大的潜力以来,我一直是特征工程的巨大倡导者。但手动完成时,这可能是一个缓慢而艰巨的过程。我必须花时间集思广益,讨论哪些功能,并从不同的角度分析它们的可用性。现在,整个FE(Feature Engineering,特征工程)流程都可以实现自动化,我将在本文中向您展示。

资料来源:VentureBeat

我们将使用名为Featuretools的Python特征工程库来执行此操作。但在我们开始讨论之前,我们首先要看一下FE的基本构建模块,用直观的例子来理解它们,然后最后使用BigMart Sales数据集深入了解自动化特征工程的可怕世界。

目录

  1. 什么是feature?

  2. 什么是特征工程?

  3. 为什么需要特征工程?

  4. 自动化特征工程

  5. Featuretools简介

  6. Featuretools的实现

  7. Featuretools可解释性

1.什么是feature?

在机器学习的背景下,feature即特征可以被描述为解释现象发生的特性(charactristic)或一组特性。当这些特性转换为某种可测量的形式时,它们被称为特征。

例如,假设您有一个学生列表。此列表包含每个学生的姓名,他们学习的小时数,他们的智商以及之前考试中的总分数。现在,您将获得有关新学生的信息 - 他/她学习的小时数和智商,但他/她的分数不见了。你必须估计他/她可能的分数。

在这里,您将使用IQ和study_hours构建预测模型来估计这些缺失的标记。因此,IQ和study_hours被称为此模型的特征。

2.什么是特征工程?

特征工程可以简单地定义为从数据集中的现有特征创建新特征的过程。让我们考虑一个样本数据,其中包含一些项目的详细信息,例如它们的重量和价格。

现在,要创建新特征,我们可以使用Item_Weight和Item_Price。那么,让我们创建一个名为Price_per_Weight的特征。它只是物品的价格除以物品的重量。此过程称为特征工程。

这只是从现有特征创建新特征的一个简单示例,但在实践中,当我们拥有相当多的特征时,特征工程可能变得非常复杂和繁琐。

让我们再看一个例子。在流行的泰坦尼克号数据集(Titanic dataset)中,有一个乘客姓名特征,下面是数据集中的一些名称:

  • Montvila, Rev. Juozas

  • Graham, Miss. Margaret Edith

  • Johnston, Miss. Catherine Helen “Carrie”

  • Behr, Mr. Karl Howell

  • Dooley, Mr. Patrick

这些名称实际上可以分解为其他有意义的特征。例如,我们可以将类似的标题提取并分组为单个类别。让我们来看看乘客姓名中的唯一标题数量。

事实证明,'Dona','Lady','Countess','Capt','Col','Don','Dr','Major','Rev','Sir'和'Jonkheer '非常罕见,可以放在一个标签下。我们称之为rare_title。除此之外,标题'Mlle'和'Ms'可以放在'Miss'下,'Mme'可以用'Mrs'替换。

这篇关于使用Python中的Featuretools实现自动化特征工程的实用指南的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/642068

相关文章

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

SpringBoot中使用Flux实现流式返回的方法小结

《SpringBoot中使用Flux实现流式返回的方法小结》文章介绍流式返回(StreamingResponse)在SpringBoot中通过Flux实现,优势包括提升用户体验、降低内存消耗、支持长连... 目录背景流式返回的核心概念与优势1. 提升用户体验2. 降低内存消耗3. 支持长连接与实时通信在Sp

Conda虚拟环境的复制和迁移的四种方法实现

《Conda虚拟环境的复制和迁移的四种方法实现》本文主要介绍了Conda虚拟环境的复制和迁移的四种方法实现,包括requirements.txt,environment.yml,conda-pack,... 目录在本机复制Conda虚拟环境相同操作系统之间复制环境方法一:requirements.txt方法

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

SpringMVC高效获取JavaBean对象指南

《SpringMVC高效获取JavaBean对象指南》SpringMVC通过数据绑定自动将请求参数映射到JavaBean,支持表单、URL及JSON数据,需用@ModelAttribute、@Requ... 目录Spring MVC 获取 JavaBean 对象指南核心机制:数据绑定实现步骤1. 定义 Ja

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py