yolov2原理到代码

2024-01-25 02:30
文章标签 代码 原理 yolov2

本文主要是介绍yolov2原理到代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

yolov2原理到代码

    • yolov2较yolov1改进的地方
    • 对图片真实框的处理
    • 真实框与anchor box的IOU计算方法
    • yolov2流程

yolov2较yolov1改进的地方

从输入图片角度:

  • 用高分辨率图片对识别网络进行了微调
  • 采用多尺度训练

从网络设计角度:

  • 增加了Batchnorm层
  • 设计了新的网络(Darknet19)
  • 增加了细粒度分类

从损失函数角度:

  • 采用anchors box
  • 利用维度聚类得出anchors box的宽高和最佳个数(5个)
  • 采用直接坐标预测法进行预测

对图片真实框的处理

  • yolov1:计算出目标在 S ∗ S S*S SS 网格中的位置,将该网格对应的B个bounding box 均设为有目标,且具体目标信息(包括置信度、box坐标、类别概率)均一致,不涉及到IOU的计算。
  • yolov2:分别计算一张图片中每个目标在 S ∗ S S*S SS 网格中的位置,再计算目标与每个anchor box的IOU,选择IOU最大的anchor box,将该位置设置为有目标,其他位置均设置为无目标。若最大的IOU为零,则所有anchor box位置均为无目标。
    tips:其实不会出现完全没有交集,即IOU=0的情况。可根据计算iou的过程得出结论。

真实框与anchor box的IOU计算方法

由于anchor box提供的是宽和高,计算IOU时假定anchor box的中心与目标所在中心位置一致,因此计算IOU其实用不到目标中心坐标,只利用anchor box和真实框的宽和高就可算出。具体如下:
在这里插入图片描述

yolov2流程

  • 对于输入图片image,设宽和高分别为 ( w i d t h , h e i g h t ) (width, height) (width,height),将true boxes的坐上坐标和右下坐标转化为中心坐标和宽高 ( x , y , w , h ) (x,y,w,h) (x,y,w,h),再 ( x , y , w , h ) / ( w i d t h , h e i g h t , w i t h , h e i g h t ) (x,y,w,h)/(width,height,with,height) (x,y,w,h)/(width,height,with,height)将true boxes归一化到 ( 0 , 1 ) (0,1) (0,1) 区间内。

  • 根据处理后的true boxes、anchors以及resize的图片大小,将true boxes转化为 ( 13 ? , 13 ? , n u m a n c h o r s , 5 ) (13?,13?,num_{anchors},5) (13?,13?,numanchors,5)的形式,再输出一个 ( 13 ? , 13 ? , n u m a n c h o r s , 1 ) (13?,13?,num_{anchors},1) (13?,13?,numanchors,1)的向量,表示某个anchors与其中一个true box最匹配,匹配位置记为1,其他位置记为0。具体:
    x , y , w , h x,y,w,h x,y,w,h乘上输出特征图大小(例如 13 ∗ 13 13*13 1313)对每个true box都做该处理,然后与anchor box进行匹配,计算出最匹配的anchor box,最终输出的 x , y x,y x,y ( x , y ) ∗ ( 13 , 13 ) − f l o o r ( ( x , y ) ∗ ( 13 , 13 ) ) (x,y)*(13,13)-floor((x,y)*(13,13)) (x,y)(13,13)floor((x,y)(13,13)),输出的 w , h w,h w,h l o g ( ( ( w , h ) ∗ ( 13 , 13 ) ) / a n c h o r s [ b e s t a n c h o r ] ) log(((w,h)*(13,13))/anchors[best_{anchor}]) log(((w,h)(13,13))/anchors[bestanchor]),最后一个是类别。

  • 构建模型

  • 构建损失函数
    损失函数计算:
    1)首先将网络出书输出转化为与true boxes相同的格式:
    网络输出为 ( 13 ? , 13 ? , n u m a n c h o r s , 5 + n u m c l a s s e s ) (13?,13?,num_{anchors},5+num_{classes}) (13?,13?,numanchors,5+numclasses) 5 + n u m c l a s s e s 5+num_{classes} 5+numclasses中的前两个分别为中心坐标 x , y x,y x,y,接下来两个人分别为宽高 w , h w,h w,h,再接下来一个是置信度,最后 n u m c l a s s e s num_{classes} numclasses个为类别概率。
    x , y , c o n f i d e n c e x,y,confidence x,y,confidence分别用 s i g m o i d sigmoid sigmoid函数激活, w , h w,h w,h取指数,类别概率用 s o f t m a x softmax softmax函数激活。
    x , y x,y x,y分别转化为相对于 13 ∗ 13 13*13 1313大小的图片的位置,范围还是 ( 0 , 1 ) (0,1) (0,1),将 w , h w,h w,h分别转化为相对于anchor box与 13 ∗ 13 13*13 1313的相对位置
    对应代码段如下
    box_xy = (box_xy + conv_index) / conv_dims
    box_wh = box_wh * anchors_tensor / conv_dims
    2)将pred box与true box的坐标形式 ( x , y , w , h ) (x,y,w,h) (x,y,w,h) 均转化为 ( x 1 , y 1 , x 2 , y 2 ) (x_1,y_1,x_2,y_2) (x1,y1,x2,y2) 的形式,计算IOU,根据最大的IOU是否超过设定阈值,判断该anchor box是否有目标,再计算损失函数(损失函数用的true box是根据第二项计算的 ( x , y , w , h ) (x,y,w,h) (x,y,w,h)算,用的pred box是根据下面的方式计算:
    直接对输出 ( 13 ? , 13 ? , n u m a n c h o r s , 5 + n u m c l a s s e s ) (13?,13?,num_{anchors},5+num_{classes}) (13?,13?,numanchors,5+numclasses) 5 + n u m c l a s s e s 5+num{classes} 5+numclasses 的前两个
    取sigmoid作为中心坐标,后两个直接作为宽高,将这个作为pred box,与true box对应位置相减计算定位损失,对于分类损失和置信度损失用的是第1)步计算出的置信度和类别概率)

  • 预测时,输出的前四个为相对于anchors的 ( x , y , w , h ) (x,y,w,h) (x,y,w,h),先转化为相对于整张图片的 ( x , y , w , h ) (x,y,w,h) (x,y,w,h),再将其转化为 ( x 1 , y 1 , x 2 , y 2 ) (x_1,y_1,x_2,y_2) (x1,y1,x2,y2),计算得分,选择超过门限的anchors box,最后做非极大值抑制。
    乘以原始图片的 ( w i d t h , h e i g h t , w i d t h , h e i g h t ) (width,height,width,height) (width,height,width,height)得出真实的坐标位置。

这篇关于yolov2原理到代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/641810

相关文章

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

Spring @Scheduled注解及工作原理

《Spring@Scheduled注解及工作原理》Spring的@Scheduled注解用于标记定时任务,无需额外库,需配置@EnableScheduling,设置fixedRate、fixedDe... 目录1.@Scheduled注解定义2.配置 @Scheduled2.1 开启定时任务支持2.2 创建

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Java Spring ApplicationEvent 代码示例解析

《JavaSpringApplicationEvent代码示例解析》本文解析了Spring事件机制,涵盖核心概念(发布-订阅/观察者模式)、代码实现(事件定义、发布、监听)及高级应用(异步处理、... 目录一、Spring 事件机制核心概念1. 事件驱动架构模型2. 核心组件二、代码示例解析1. 事件定义

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

深入解析 Java Future 类及代码示例

《深入解析JavaFuture类及代码示例》JavaFuture是java.util.concurrent包中用于表示异步计算结果的核心接口,下面给大家介绍JavaFuture类及实例代码,感兴... 目录一、Future 类概述二、核心工作机制代码示例执行流程2. 状态机模型3. 核心方法解析行为总结:三