即插即用型ADMM应用于图像超分

2024-01-24 21:48

本文主要是介绍即插即用型ADMM应用于图像超分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Plug-and-Play优化公式

x ^ = arg min ⁡ x f ( x ) + λ g ( x ) \hat{x}=\argmin_{x} f(x)+\lambda g(x) x^=xargminf(x)+λg(x) (1)

首先这是一个最大后验的问题,我们可以用ADMM方法转化为下面的算式:

{ x ( k + 1 ) = arg min ⁡ x f ( x ) + ρ 2 ∣ ∣ x − v ( k ) + u ( k ) ∣ ∣ 2 v ( k + 1 ) = D σ k ( x ( k + 1 ) + u ( k ) ) u ( k + 1 ) = u ( k ) + ( x ( k + 1 ) − v ( k + 1 ) ) \begin{cases} x^{(k+1)} = \argmin_{x}f(x)+\frac{\rho}{2}||x-v^{(k)}+u^{(k)}||^2\\ v^{(k+1)}=D_{\sigma_{k}}(x^{(k+1)}+u^{(k)})\\ u^{(k+1)}=u^{(k)}+(x^{(k+1)}-v^{(k+1)})\end{cases} x(k+1)=xargminf(x)+2ρxv(k)+u(k)2v(k+1)=Dσk(x(k+1)+u(k))u(k+1)=u(k)+(x(k+1)v(k+1)) (2)

在超分问题的应用

在超分辨率问题中,函数 f ( x ) f(x) f(x)拥有二次项的形式:

f ( x ) = ∣ ∣ S H x − y ∣ ∣ 2 f(x)=||SHx-y||^2 f(x)=SHxy2(3)

这里 H ∈ R n × n H\in R^{n\times n} HRn×n是一个循环矩阵,用于对抗混叠滤波器进行卷积。

循环矩阵有一个重要的性质:可以被离散傅里叶变换矩阵对角化

公式为: X = c ( x ) = F ⋅ d i a g ( F ( x ) ) ⋅ F H X=c(x)=F\cdot diag(\mathscr{F}(x))\cdot F^H X=c(x)=Fdiag(F(x))FH,其中 F ( ⋅ ) \mathscr{F}(\cdot) F()表示离散傅里叶变换, F F F表示DFT矩阵。 F F H = F H F = I FF^H=F^HF=I FFH=FHF=I,这是一个酉矩阵。之所以把它叫做DFT矩阵是因为一个信号的DFT变换可以由和这个矩阵相乘得到。 x x x表示构成循环矩阵的向量 x = [ x 0 x 1 x 2 ] x=\begin{bmatrix}x_0&x_1&x_2\end{bmatrix} x=[x0x1x2]

下面为循环矩阵的例子:

X = c ( x ) = [ x 0 x 1 x 2 x 2 x 0 x 1 x 1 x 2 x 0 ] X=c(x)=\begin{bmatrix}x_0 & x_1&x_2\\x_2&x_0&x_1\\x_1&x_2&x_0\end{bmatrix} X=c(x)=x0x2x1x1x0x2x2x1x0

而均值滤波的高斯模糊滤波器的形式是: X = 1 9 [ 1 1 1 1 1 1 1 1 1 ] X=\frac{1}{9}\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix} X=91111111111显然这是一个循环矩阵(还有一种在降采样中常用的高斯模糊核,因为它不是循环矩阵所以不能用我们这种方法)。

继续超分问题的分析

H是一个循环矩阵,S是一个降采样矩阵,我们定义 G : = S H G:=SH G:=SH。带入(2)式,我们得到下面的优化方程:
x ^ = arg min ⁡ x ∈ R n ∣ ∣ G x − y ∣ ∣ 2 + ρ 2 ∣ ∣ x − x ~ ∣ ∣ 2 \hat{x}=\argmin_{x\in R^n}||Gx-y||^2+\frac{\rho}{2}||x-\widetilde{x}||^2 x^=xRnargminGxy2+2ρxx 2.(4)
这个方程有闭式解:
x ^ = ( G T G + ρ I ) − 1 ( G T y + ρ x ~ ) \hat{x}=(G^TG+\rho I)^{-1}(G^Ty+\rho \widetilde{x}) x^=(GTG+ρI)1(GTy+ρx ).(5)
但是这个闭式解含有伪逆运算,所以运算速度比较慢。

  1. G = S H G=SH G=SH时,由于 H T S T S H H^TS^TSH HTSTSH既不是对角矩阵也不可以通过傅里叶变换对角化,所以它的解是非平凡的解。我们可以使用多变量分割的方法或者直接通过共轭梯度法对方程求解,但是多变量分割的方法需要拉格朗日乘子和内部变量,所以运算速度也很慢。
  2. S S S是标准的K倍降采样算符,H是循环卷积时我们有机会得到闭式解。下面展示如何使用傅里叶变换的方式加快运算。

通过傅里叶变换求闭式解

首先我们需要使用Woodbury Matrix Identity and Sherman-Morrison Formula(伍德伯里恒等式)来改写(5)式为:
x ^ = ρ − 1 b − ρ − 1 G T ( ρ I + G G T ) − 1 G b \hat{x}=\rho^{-1}b-\rho^{-1}G^T(\rho I+GG^T)^{-1}Gb x^=ρ1bρ1GT(ρI+GGT)1Gb,(6)
这里 b : = G T y + ρ x ~ b:=G^Ty+\rho \tilde{x} b:=GTy+ρx~.
更加关键的步骤在于下面的发现:
G G T = S H H T S T GG^T=SHH^TS^T GGT=SHHTST.
因为 S S S是一个K倍降采样算符,那么 S T S^T ST就是一个K倍升采样算符。定义 H ~ = H H T \tilde{H}=HH^T H~=HHT,这可以解释为在模糊核h和它的时间反演之间的卷积。那么 S T H ~ S S^T\tilde{H}S STH~S就是一种升采样-滤波器-降采样结构,如下图:
在这里插入图片描述
接下来使用数字信号处理中的多项分解及Z变换的技术,实现傅里叶变换形式的闭式解如下:
x = ρ − 1 b − ρ − 1 G T ( F − 1 { F ( G b ) ∣ F ( h 0 ~ ) ∣ 2 + ρ } ) x=\rho^{-1}b-\rho^{-1}G^T(\mathscr{F}^{-1} \lbrace \frac{\mathscr{F}(Gb)}{|\mathscr{F}(\tilde{h_0})|^2+\rho}\rbrace) x=ρ1bρ1GT(F1{F(h0~)2+ρF(Gb)}).(7)
其中 b = G T y + ρ x ~ b=G^Ty+\rho\tilde{x} b=GTy+ρx~

参考文献

[1]:Plug-and-Play ADMM for Image Restoration:Fixed Point Convergence and Applications

这篇关于即插即用型ADMM应用于图像超分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/641115

相关文章

Python使用Tkinter打造一个完整的桌面应用

《Python使用Tkinter打造一个完整的桌面应用》在Python生态中,Tkinter就像一把瑞士军刀,它没有花哨的特效,却能快速搭建出实用的图形界面,作为Python自带的标准库,无需安装即可... 目录一、界面搭建:像搭积木一样组合控件二、菜单系统:给应用装上“控制中枢”三、事件驱动:让界面“活”

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

Python Flask 库及应用场景

《PythonFlask库及应用场景》Flask是Python生态中​轻量级且高度灵活的Web开发框架,基于WerkzeugWSGI工具库和Jinja2模板引擎构建,下面给大家介绍PythonFl... 目录一、Flask 库简介二、核心组件与架构三、常用函数与核心操作 ​1. 基础应用搭建​2. 路由与参

Spring Boot中的YML配置列表及应用小结

《SpringBoot中的YML配置列表及应用小结》在SpringBoot中使用YAML进行列表的配置不仅简洁明了,还能提高代码的可读性和可维护性,:本文主要介绍SpringBoot中的YML配... 目录YAML列表的基础语法在Spring Boot中的应用从YAML读取列表列表中的复杂对象其他注意事项总

电脑系统Hosts文件原理和应用分享

《电脑系统Hosts文件原理和应用分享》Hosts是一个没有扩展名的系统文件,当用户在浏览器中输入一个需要登录的网址时,系统会首先自动从Hosts文件中寻找对应的IP地址,一旦找到,系统会立即打开对应... Hosts是一个没有扩展名的系统文件,可以用记事本等工具打开,其作用就是将一些常用的网址域名与其对应

CSS 样式表的四种应用方式及css注释的应用小结

《CSS样式表的四种应用方式及css注释的应用小结》:本文主要介绍了CSS样式表的四种应用方式及css注释的应用小结,本文通过实例代码给大家介绍的非常详细,详细内容请阅读本文,希望能对你有所帮助... 一、外部 css(推荐方式)定义:将 CSS 代码保存为独立的 .css 文件,通过 <link> 标签

Python使用Reflex构建现代Web应用的完全指南

《Python使用Reflex构建现代Web应用的完全指南》这篇文章为大家深入介绍了Reflex框架的设计理念,技术特性,项目结构,核心API,实际开发流程以及与其他框架的对比和部署建议,感兴趣的小伙... 目录什么是 ReFlex?为什么选择 Reflex?安装与环境配置构建你的第一个应用核心概念解析组件