Python基础第九篇(Python可视化的开发)

2024-01-24 07:44

本文主要是介绍Python基础第九篇(Python可视化的开发),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、json数据格式
    • (1).转换案例代码
    • (2).读出结果
  • 二、pyecharts模块介绍
  • 三、pyecharts模块入门
    • (1).pyecharts模块安装
    • (2).pyecharts模块操作
      • (1).代码
      • (2).读出结果
  • 四、数据处理
  • 五、创建最终折线图

本篇博客将把你带入Python开发的世界,尤其是与json数据格式和pyecharts模块相关的知识。我们将从json数据的格式和转换开始,深入探讨Python语言如何处理这种常用的数据格式。博客的后半部分将集中在pyecharts模块,首先介绍它的基本功能,然后通过实例教学,全面展示如何使用这个强大的绘图库制作折线图。在最后一部分,我们将将这些理论知识运用到实际的数据处理过程中,并创建出自己的折线图。无论你是Python的初学者,还是想增进对这两个主题理解的资深开发者,我相信这篇博客都会为你提供有价值的信息。让我们开始吧!

一、json数据格式

**加粗样式
在这里插入图片描述
json中的数据格式与Python相似看作字典就好也可以是列表中嵌套字典
在这里插入图片描述
在这里插入图片描述

(1).转换案例代码

代码如下(示例):

"""演示json数据转换Python数据
"""
import json# 准备一个列表,将数据转换成jsin类型
date=[{"id":"张三","age":35},{"id":"李四","age":25},{"id":"王五","age":29}]
json_str=json.dumps(date,ensure_ascii=False)
print(json_str)
print(type(json_str))
# 准备一个字典,将字典转成json
dates = {"id":"张三","age":35}
json_str=json.dumps(dates,ensure_ascii=False)
print(json_str)
print(type(json_str))
# 将json字符串数据转成python数据
s='[{"id":"张三","age":35},{"id":"李四","age":25},{"id":"王五","age":29}]'
l=json.loads(s)
print(l)
print(type(l))

(2).读出结果

代码如下(示例):

<class 'str'>
{"id": "张三", "age": 35}
<class 'str'>
[{'id': '张三', 'age': 35}, {'id': '李四', 'age': 25}, {'id': '王五', 'age': 29}]
<class 'list'>

二、pyecharts模块介绍

在这里插入图片描述
pyecharts官网https://05x-docs.pyecharts.org/#/

三、pyecharts模块入门

在这里插入图片描述

(1).pyecharts模块安装

在这里插入图片描述

(2).pyecharts模块操作

(1).代码

代码如下(示例):

"""演示pyecharts的基础入门
"""
# 导包
from pyecharts.charts import Line
from pyecharts.options import TitleOpts
# 创建一个折线图对象
line = Line()
# 给折线图对象添加x轴的数据
line.add_xaxis(["中国","美国","英国"])
# 给折线图对象添加y轴的数据
line.add_yaxis("GDP",[30,20,10])
# 设置全局配置项
line.set_global_opts(title_opts=TitleOpts(title="GDP展示",pos_left="center",pos_bottom="1%"))
# 通过render方法,将代码生成为图像
line.render()

(2).读出结果

在这里插入图片描述

四、数据处理

于专门处理数据的网站中处理例如:
1,在线懒人工具ab73.com
2,Google数据集搜索引擎https://datasetsearch.research.google.com/
3,Kaggle 数据集https://www.kaggle.com/datasets
因不同网站的使用方法不同且数据不变展示,对于此步骤不做过多介绍

五、创建最终折线图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于Python基础第九篇(Python可视化的开发)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/638993

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre