无监督学习 - 聚类的潜在语义分析(Latent Semantic Analysis,LSA)

2024-01-24 07:20

本文主要是介绍无监督学习 - 聚类的潜在语义分析(Latent Semantic Analysis,LSA),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

什么是机器学习

潜在语义分析(Latent Semantic Analysis,LSA)是一种无监督学习方法,用于在文本数据中发现潜在的语义结构。LSA 的主要应用之一是进行文本文档的主题建模信息检索

以下是一个使用 Python 中的 scikit-learn 库来实现潜在语义分析(LSA)的简单教程。

步骤1: 导入库

import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import TruncatedSVD

步骤2: 准备文本数据

# 示例文本数据
documents = ["Natural language processing is a field of artificial intelligence.","Text analysis involves processing and understanding written language.","Machine learning algorithms are used in natural language processing.","Topic modeling is a technique in text analysis.","Latent semantic analysis is a type of topic modeling."
]

步骤3: 文本向量化

使用 TF-IDF(Term Frequency-Inverse Document Frequency)向量化文本数据。

# TF-IDF向量化
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(documents)

步骤4: 使用潜在语义分析(LSA)

# 使用TruncatedSVD进行潜在语义分析
n_components = 2  # 指定潜在语义的维度
lsa = TruncatedSVD(n_components=n_components)
lsa_result = lsa.fit_transform(X)

步骤5: 查看潜在语义的结果

# 查看潜在语义的结果
print("LSA Components:")
print(lsa.components_)
print("\nLSA Explained Variance Ratio:")
print(lsa.explained_variance_ratio_)

步骤6: 可视化潜在语义的结果

# 可视化潜在语义的结果
plt.scatter(lsa_result[:, 0], lsa_result[:, 1], c='blue', marker='o')
plt.title('Latent Semantic Analysis')
plt.xlabel('LSA Component 1')
plt.ylabel('LSA Component 2')
plt.show()

在这个例子中,我们首先将文本数据使用 TF-IDF 向量化,然后使用 TruncatedSVD 进行潜在语义分析。最后,我们查看了潜在语义的结果,并通过散点图可视化了文档在潜在语义空间的分布。

调整 n_components 参数可以改变潜在语义的维度。这个参数的选择通常是一个平衡,需要根据具体问题和数据集进行调整。

这篇关于无监督学习 - 聚类的潜在语义分析(Latent Semantic Analysis,LSA)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/638933

相关文章

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499