无监督学习 - 聚类的潜在语义分析(Latent Semantic Analysis,LSA)

2024-01-24 07:20

本文主要是介绍无监督学习 - 聚类的潜在语义分析(Latent Semantic Analysis,LSA),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

什么是机器学习

潜在语义分析(Latent Semantic Analysis,LSA)是一种无监督学习方法,用于在文本数据中发现潜在的语义结构。LSA 的主要应用之一是进行文本文档的主题建模信息检索

以下是一个使用 Python 中的 scikit-learn 库来实现潜在语义分析(LSA)的简单教程。

步骤1: 导入库

import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import TruncatedSVD

步骤2: 准备文本数据

# 示例文本数据
documents = ["Natural language processing is a field of artificial intelligence.","Text analysis involves processing and understanding written language.","Machine learning algorithms are used in natural language processing.","Topic modeling is a technique in text analysis.","Latent semantic analysis is a type of topic modeling."
]

步骤3: 文本向量化

使用 TF-IDF(Term Frequency-Inverse Document Frequency)向量化文本数据。

# TF-IDF向量化
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(documents)

步骤4: 使用潜在语义分析(LSA)

# 使用TruncatedSVD进行潜在语义分析
n_components = 2  # 指定潜在语义的维度
lsa = TruncatedSVD(n_components=n_components)
lsa_result = lsa.fit_transform(X)

步骤5: 查看潜在语义的结果

# 查看潜在语义的结果
print("LSA Components:")
print(lsa.components_)
print("\nLSA Explained Variance Ratio:")
print(lsa.explained_variance_ratio_)

步骤6: 可视化潜在语义的结果

# 可视化潜在语义的结果
plt.scatter(lsa_result[:, 0], lsa_result[:, 1], c='blue', marker='o')
plt.title('Latent Semantic Analysis')
plt.xlabel('LSA Component 1')
plt.ylabel('LSA Component 2')
plt.show()

在这个例子中,我们首先将文本数据使用 TF-IDF 向量化,然后使用 TruncatedSVD 进行潜在语义分析。最后,我们查看了潜在语义的结果,并通过散点图可视化了文档在潜在语义空间的分布。

调整 n_components 参数可以改变潜在语义的维度。这个参数的选择通常是一个平衡,需要根据具体问题和数据集进行调整。

这篇关于无监督学习 - 聚类的潜在语义分析(Latent Semantic Analysis,LSA)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/638933

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

Mysql中isnull,ifnull,nullif的用法及语义详解

《Mysql中isnull,ifnull,nullif的用法及语义详解》MySQL中ISNULL判断表达式是否为NULL,IFNULL替换NULL值为指定值,NULLIF在表达式相等时返回NULL,用... 目录mysql中isnull,ifnull,nullif的用法1. ISNULL(expr) → 判

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三