ML 吴恩达 ex5:正则化、偏差、方差、样本容量之间关系总结

本文主要是介绍ML 吴恩达 ex5:正则化、偏差、方差、样本容量之间关系总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、高偏差(欠拟合)(high bias)

1.1、表现

1.2 、解决方法 — Feature Mapping for Polynomial Regression

二、高方差(过拟合)(variance)

2.1、表现

2.2、解决方法 — 正则化



一、高偏差(欠拟合)(high bias)

1.1、表现

% 1.1、无正则化的线性回归的模型
lambda = 0;  
[theta] = trainLinearReg([ones(m, 1) X], y, lambda);
% 1.2、无正则化的线性回归的学习情况
[error_train, error_val] = ...learningCurve([ones(m, 1) X], y, ...[ones(size(Xval, 1), 1) Xval], yval, ...lambda);
  • 左图可以看出回归效果不好,偏差大,模型过于简单,不能反映实际情况,由右图看出,此时增加样本容量,交叉训练误差和训练误差慢慢接近,两者都挺大的。故高偏差的情况下增加样本容量并不能降低偏差,提高效率。

1.2 、解决方法 — Feature Mapping for Polynomial Regression

  • 通过对Feature处理,增加非线性项,使得模型可以更加精确(复杂)
  • 对数据分为训练集、测试集、交叉验证集
lambda = 0;
[theta] = trainLinearReg(X_poly, y, lambda);
[error_train,error_test ,error_val] = ...learningCurve2(X_poly, y, X_poly_val, yval,X_poly_test, ytest,lambda);
% Plot training data and fit
figure,subplot(1,2,1)
plot(X, y, 'rx', 'MarkerSize', 10, 'LineWidth', 1.5);
plotFit(min(X), max(X), mu, sigma, theta, p);
xlabel('Change in water level (x)');
ylabel('Water flowing out of the dam (y)');
title (sprintf('Polynomial Regression Fit (lambda = %f)', lambda));
legend('Orgin data','polynomial regression fit p=8')subplot(1,2,2)
plot(1:m, error_train,'rx', 1:m, error_val,'g--',1:m, error_test,'MarkerSize', 10, 'LineWidth', 1.5);
title(sprintf('Polynomial Regression Learning Curve (lambda = %f)', lambda));
xlabel('Number of training examples')
ylabel('Error')
axis([0 13 0 100])
legend('Train', 'Cross Validation','Test')
  • 由左图可以看到现在模型可以很好的拟合所有的原始数据(训练误差一直为0),但是交叉误差和测试误差都挺大的,这说明模型的泛化能力不好,出现了另外一个问题:高方差。高方差的问题,可以随着样本数量增加,得到改善(交叉集和测试集的误差都有减少。)

二、高方差(过拟合)(variance)

2.1、表现

  • 模型在训练集上表现很好,但是在测试集、交叉验证集上面表现不好,泛化能力差,模型相对而言不稳定,复杂,方差高
  • 其学习曲线如上图。

2.2、解决方法 — 正则化

  • 增加样本数量

           如上图所示,当样本容量增加时,测试误差、交叉验证误差都会下降,模型性能相对会提高。

  • 使用正则化方法
  1. 计算不同lambda下的训练集、交叉验证机、测试集的误差
    function [lambda_vec, error_train, error_val,error_test] = ...validationCurve2(X, y, Xval, yval,Xtest, ytest)% Selected values of lambda (you should not change this)
    lambda_vec = [0 0.001 0.003 0.01 0.03 0.1 0.3 1 3 10]';error_train = zeros(length(lambda_vec), 1);
    error_val = zeros(length(lambda_vec), 1);
    error_test = zeros(length(lambda_vec), 1);for i=1:size(lambda_vec, 1)theta = trainLinearReg(X, y, lambda_vec(i));error_train(i) = linearRegCostFunction(X, y, theta, 0);error_val(i) = linearRegCostFunction(Xval, yval, theta, 0);error_test(i) = linearRegCostFunction(Xtest, ytest, theta, 0);
    end% =========================================================================end
    

     

  2. 画图
    [lambda_vec, error_train, error_val,error_test] = ...validationCurve2(X_poly, y, X_poly_val, yval,X_poly_test, ytest);close all;
    plot(lambda_vec, error_train, lambda_vec, error_val, lambda_vec, error_test);
    legend('Train', 'Cross Validation','Test');
    xlabel('lambda');
    ylabel('Error');

     

  3. 结果
  • 通过画学习曲线,找到最佳的正则化参数lambda.

三、交叉验证集和测试集

  1. 通过训练集和交叉验证集,确定参数lambda
  2. 由上步确定的lambda,看测试集的模型效果。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

这篇关于ML 吴恩达 ex5:正则化、偏差、方差、样本容量之间关系总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/637384

相关文章

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

java Long 与long之间的转换流程

《javaLong与long之间的转换流程》Long类提供了一些方法,用于在long和其他数据类型(如String)之间进行转换,本文将详细介绍如何在Java中实现Long和long之间的转换,感... 目录概述流程步骤1:将long转换为Long对象步骤2:将Longhttp://www.cppcns.c

Golang 日志处理和正则处理的操作方法

《Golang日志处理和正则处理的操作方法》:本文主要介绍Golang日志处理和正则处理的操作方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录1、logx日志处理1.1、logx简介1.2、日志初始化与配置1.3、常用方法1.4、配合defer

Nginx Location映射规则总结归纳与最佳实践

《NginxLocation映射规则总结归纳与最佳实践》Nginx的location指令是配置请求路由的核心机制,其匹配规则直接影响请求的处理流程,下面给大家介绍NginxLocation映射规则... 目录一、Location匹配规则与优先级1. 匹配模式2. 优先级顺序3. 匹配示例二、Proxy_pa

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

MySQL基本查询示例总结

《MySQL基本查询示例总结》:本文主要介绍MySQL基本查询示例总结,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Create插入替换Retrieve(读取)select(确定列)where条件(确定行)null查询order by语句li

Linux区分SSD和机械硬盘的方法总结

《Linux区分SSD和机械硬盘的方法总结》在Linux系统管理中,了解存储设备的类型和特性是至关重要的,不同的存储介质(如固态硬盘SSD和机械硬盘HDD)在性能、可靠性和适用场景上有着显著差异,本文... 目录一、lsblk 命令简介基本用法二、识别磁盘类型的关键参数:ROTA查询 ROTA 参数ROTA

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Windows Docker端口占用错误及解决方案总结

《WindowsDocker端口占用错误及解决方案总结》在Windows环境下使用Docker容器时,端口占用错误是开发和运维中常见且棘手的问题,本文将深入剖析该问题的成因,介绍如何通过查看端口分配... 目录引言Windows docker 端口占用错误及解决方案汇总端口冲突形成原因解析诊断当前端口情况解