深度学习技术栈 —— Pytorch之TensorDataset、DataLoader

2024-01-23 18:20

本文主要是介绍深度学习技术栈 —— Pytorch之TensorDataset、DataLoader,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度学习技术栈 —— Pytorch之TensorDataset、DataLoader

  • 前言
  • 一、TensorDataset、DataLoader的用法?
  • 二、从.csv文件-->tensor张量
  • 总结


前言

简单来说,TensorDatasetDataLoader这两个类的作用, 就是将数据读入并做整合,以便交给模型处理。就像石油加工厂一样,你不关心石油是如何采集与加工的,你关心的是自己去哪加油,油价是多少,对于一个模型而言,DataLoader就是这样的一个予取予求的数据服务商。

参考文章或视频链接
[1] How to use TensorDataset, Dataloader (pytorch)

一、TensorDataset、DataLoader的用法?

# coding:utf-8
# @Time: 2024/1/23 上午9:57
# @Author: 键盘国治理专家
# @File: __init__.py.py
# @Description: import numpy as np
import torch
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoaderdef test_TensorDataset():input = np.random.rand(4, 2)  # Input datacorrect = np.random.rand(4, 1)  # Correct answer datainput = torch.FloatTensor(input)  # Change to an array that can be handled by pytorchcorrect = torch.FloatTensor(correct)  # Same as aboveprint(input)print(correct)dataset = TensorDataset(input, correct)  # set the data,注意,是TensorDataset而不是Dataset,Dataset是个abstract class不能实例化print(dataset)  # 打印地址print(vars(dataset))  # vars prints the contents of the objectreturn datasetdef test_DataLoader(dataset):train_load = DataLoader(dataset, batch_size=3, shuffle=False)  # Data shuffle with shuffle=Truefor x, t in train_load:print('x-->', x)print('t-->', t)if __name__ == '__main__':dataset = test_TensorDataset()print("========================================================================================")test_DataLoader(dataset)

二、从.csv文件–>tensor张量

一般说来,大部分Kaggle比赛的数据都是以.csv为格式的,而Pytorch处理的是tensor张量,所以我们要了解如何将.csv文件的数据变成tensor张量数据。

"""
步骤如下
(1) xx.csv --> 经由pandas 变成 numpy 数组
(2) numpy 变成 tensor 张量
(3) tensor张量经过TensorDataset的组合
(4) dataset再经过DataLoader的处理,进而保证数据可用,以上为清洗过程
.csv --> numpy --> tensor --> dataset --> dataloader 四个过程,五个数据中转形式。
"""
# coding:utf-8
# @Time: 2024/1/23 下午1:01
# @Author: 键盘国治理专家
# @File: csv2tensor.py
# @Description:import numpy
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoaderdef csv2numpy(csv_path):data = pd.read_csv(csv_path, dtype=np.float64)# numpy_data = data.iloc[:, data.columns != "xx"]  # 另一种用法,data.columns != "xx" 可以过滤掉你不想读入的字段numpy_data = data.iloc[:].valuesreturn numpy_datadef numpy2tensor(numpy_data):tensor_data = torch.from_numpy(numpy_data)return tensor_datadef tensor2DataLoader(tensor_data):  # 一步到位,直接变成DataLoader。最简单的实现方式,这个func还有改进空间,DataSet可以接收多个tensor数据dataset = torch.utils.data.TensorDataset(tensor_data)data_loader = torch.utils.data.DataLoader(dataset, shuffle=False)return data_loader# 你甚至可以直接将.csv处理成DataLoader了,把这几个过程简单组合下形成一个新函数
def csv2DataLoader(csv_path):numpy_data = csv2numpy(csv_path)tensor_data = numpy2tensor(numpy_data)data_loader = tensor2DataLoader(tensor_data)return data_loaderif __name__ == '__main__':numpy_data = csv2numpy("./test.csv")# print(type(numpy_data))# print(numpy_data.shape)# print(numpy_data)tensor_data = numpy2tensor(numpy_data)# print(type(tensor_data))# print(tensor_data.shape)# print(tensor_data)data_loader = tensor2DataLoader(tensor_data)# print(type(data_loader))# print(data_loader)# print(data_loader.dataset)# # 用遍历的方式才能输出data_loader里的数据# for data_item in data_loader:#     print('data_item-->', data_item)# # 把数据的索引也一起输出# for i, data_item in enumerate(data_loader):#     print('i', i)#     print('data_item-->', data_item)

总结

本篇工作虽然简单,但确是进阶的一个不大不小的绊脚石,功夫虽小,也不能不练。

这篇关于深度学习技术栈 —— Pytorch之TensorDataset、DataLoader的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/637131

相关文章

SQL 注入攻击(SQL Injection)原理、利用方式与防御策略深度解析

《SQL注入攻击(SQLInjection)原理、利用方式与防御策略深度解析》本文将从SQL注入的基本原理、攻击方式、常见利用手法,到企业级防御方案进行全面讲解,以帮助开发者和安全人员更系统地理解... 目录一、前言二、SQL 注入攻击的基本概念三、SQL 注入常见类型分析1. 基于错误回显的注入(Erro

python协程实现高并发的技术详解

《python协程实现高并发的技术详解》协程是实现高并发的一种非常高效的方式,特别适合处理大量I/O操作的场景,本文我们将简单介绍python协程实现高并发的相关方法,需要的小伙伴可以了解下... 目录核心概念与简单示例高并发实践:网络请求协程如何实现高并发:核心技术协作式多任务与事件循环非阻塞I/O与连接

Java枚举类型深度详解

《Java枚举类型深度详解》Java的枚举类型(enum)是一种强大的工具,它不仅可以让你的代码更简洁、可读,而且通过类型安全、常量集合、方法重写和接口实现等特性,使得枚举在很多场景下都非常有用,本文... 目录前言1. enum关键字的使用:定义枚举类型什么是枚举类型?如何定义枚举类型?使用枚举类型:2.

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Java中的Schema校验技术与实践示例详解

《Java中的Schema校验技术与实践示例详解》本主题详细介绍了在Java环境下进行XMLSchema和JSONSchema校验的方法,包括使用JAXP、JAXB以及专门的JSON校验库等技术,本文... 目录1. XML和jsON的Schema校验概念1.1 XML和JSON校验的必要性1.2 Sche

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3