使用NVIDIA TensorRT-LLM支持CodeFuse-CodeLlama-34B上的int4量化和推理优化实践

本文主要是介绍使用NVIDIA TensorRT-LLM支持CodeFuse-CodeLlama-34B上的int4量化和推理优化实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文首发于 NVIDIA

一、概述

CodeFuse(https://github.com/codefuse-ai)是由蚂蚁集团开发的代码语言大模型,旨在支持整个软件开发生命周期,涵盖设计、需求、编码、测试、部署、运维等关键阶段。
 

为了在下游任务上获得更好的精度,CodeFuse 提出了多任务微调框架(MFTCoder),能够解决数据不平衡和不同收敛速度的问题。
 

通过对比多个预训练基座模型的精度表现,我们发现利用 MFTCoder [1,2] 微调后的模型显著优于原始基座模型。其中,尤为值得关注的是采用了 MFTCoder 框架,并利用多任务数据集进行微调的 CodeFuse-CodeLlama-34B [3] 模型,在 HumanEval 评估数据集中取得了当时的最好结果。具体来说,基于 CodeLlama-34b-Python 模型进行微调的 CodeFuse-CodeLlama-34B 在 HumanEval-python 上实现了 74.4% 的 pass@1(贪婪解码)。以下是完整的代码能力评估结果 :

在代码补全、text2code、代码翻译、单测生成以及代码生成任务上,CodeFuse-CodeLlama-34B 全面超过 GPT-3.5;CodeFuse-CodeLlama-34B 能够在单测生成和代码补全(HumanEval )任务上超过 GPT-4。同时,上述微调模型、MFTCoder 训练框架和高质量代码数据集已经开源(github: https://github.com/codefuse-ai)。
 

然而,CodeFuse-CodeLlama-34B 的部署遇到了如下两个挑战:
 

1)数据类型为 fp16 的 34B 模型,显存占用为 68 GB,至少需要 3 张 A10 才能加载模型,部署成本很高;

2)在模型推理的生成阶段,通常伴随着长条形的矩阵运算,此时计算量较小,不足以掩盖 GPU 的访存延迟,即 memory bound 问题,此时程序的性能受限于 GPU 带宽。

为了解决上述问题,我们利用 GPTQ 量化技术,在降低了部署成本的同时,也缓解了 GPU 的带宽压力 ,从而显著提升了推理速度。最终,CodeFuse-CodeLlama-34B 的 int4 量化模型可以部署在单张 A10 显卡上,推理速度可以达到 20 tokens/s (batch_size=1)。同时,相较于 fp16 数据精度的模型,通过算法上的优化,int4 量化引入的精度下降可以控制在 1% 以内。下面,我们从模型量化和测试两个方面展示我们是如何实现 CodeFuse-CodeLlama-34B 模型的 int4 量化部署的。另外,TensorRT-LLM 也支持了 CodeFuse 中基于 MFTCoder 训练的开源模型部署。
 

二、CodeFuse-CodeLlama-34B int4 量化


这里我们使用 GPTQ [4] 技术对模型进行 int4 量化。GPTQ 是对逐层量化范式经典框架 OBQ(Optimal Brain Quantization)[5] 的高效实现,能够利用单张 A100-80G 在 4 小时内完成 OPT-175B 模型的量化,并且可以获得较好的准确率。
 

另外,我们这里采用了静态量化方式,即通过矫正数据离线地进行量化,得到诸如缩放因子和零点的量化参数,在推理时不再进行量化参数的更新。与之对应的是动态量化,会在模型推理的同时根据输入进行量化参数的调整。最后,我们这里进行的是 int4-weight-only 量化,即只对权重进行量化而不对层输入进行量化,即 W4A16 量化。
 

GPTQ 算法


 

  1. 所有输出通道共享相同的量化顺序,从而使得行间共享同一份 Hessian 矩阵,大大减少了算法计算量。
  2. 使用一次 Cholesky 分解代替了在 GPTQ 每次迭代中对整个 Hessian 矩阵的逆矩阵的高斯消元迭代更新方式。既大大减少了计算量,又得以利用成熟 GPU 矩阵库中的 Cholesky 算法,且避免了迭代更新方式在矩阵运算中所带来的数值不稳定问题。
  3. 通过将整个计算过程由对单个输入通道进行更新,等效转变为划分 batch 并逐 batch 更新的方式,避免了每次量化对整个 Hessian 与权重矩阵的 GPU 读写操作,大大降低了 GPU 访存数量。
     

上述的改进使得 GPTQ 可以有效提升 GPU 利用率,从而能够对大模型进行高效量化。

三、int4-weight-only 量化

这里我们利用开源工具 AutoGPTQ(https://github.com/PanQiWei/AutoGPTQ)进行量化,工具超参数如下;


 

利用 AutoGPTQ 进行模型加载和推理的例子如下:
 

import os
import torch
import time
from modelscope import AutoTokenizer, snapshot_download
from auto_gptq import AutoGPTQForCausalLMos.environ["TOKENIZERS_PARALLELISM"] = "false"def load_model_tokenizer(model_path):"""Load model and tokenizer based on the given model name or local path of downloaded model."""tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False,lagecy=False)tokenizer.padding_side = "left"tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids("<unk>")tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids("</s>")model = AutoGPTQForCausalLM.from_quantized(model_path, inject_fused_attention=False,inject_fused_mlp=False,use_cuda_fp16=True,disable_exllama=False,device_map='auto'   # Support multi-gpus)return model, tokenizerdef inference(model, tokenizer, prompt):"""Uset the given model and tokenizer to generate an answer for the speicifed prompt."""st = time.time()inputs = prompt if prompt.endswith('\n') else f'{prompt}\n'input_ids = tokenizer.encode(inputs, return_tensors="pt", padding=True, add_special_tokens=False).to("cuda")with torch.no_grad():generated_ids = model.generate(input_ids=input_ids,top_p=0.95,temperature=0.1,do_sample=True,max_new_tokens=512,eos_token_id=tokenizer.eos_token_id,pad_token_id=tokenizer.pad_token_id              )print(f'generated tokens num is {len(generated_ids[0][input_ids.size(1):])}')outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) print(f'generate text is {outputs[0][len(inputs): ]}')latency = time.time() - stprint('latency is {} seconds'.format(latency))if __name__ == "__main__":model_dir = snapshot_download('codefuse-ai/CodeFuse-CodeLlama-34B-4bits', revision='v1.0.0')prompt = 'Please write a QuickSort program in Python'model, tokenizer = load_model_tokenizer(model_dir)inference(model, tokenizer, prompt)

在做静态量化时,GPTQ 使用矫正数据集作为输入计算 Hessian 矩阵,从而更新未量化权重进而补偿量化带来的误差。如果推理阶段的输入和矫正数据集有偏差(bias),那么量化时用矫正数据得到的 Hessian 矩阵就无法完全反映推理输入,这会导致 GPTQ 的误差补偿失效(失效的程度和偏差成正比),出现量化模型在推理输入上量化误差变大的情况,进而导致量化模型的精度下降。
 

为了解决上述问题,对于微调模型,我们使用了一种数据分布对齐技术减少模型量化带来的损失。通过抽取训练数据(CodeFuse 开源的高质量代码数据集 evol)中的 Question 作为引导方式,利用原始模型生成 Answer,将 Question 和 Answer 拼接起来作为矫正数据;最终在 HumanEval Benchmarks 的 Python pass@1 取得了 73.8% 的准确率,相较于 bf16 模型仅有 0.6% 的精度损失。同时,在 CMNLI 和 C-Eval 两个数据集的精度损失也比较少。

四、构建 TensorRT 引擎

在通过 AutoGPTQ 可以得到 safetensors 格式的 int4 量化模型 [6] 后,我们的目标是构建单卡 TensorRT 引擎,同时保证 activation 是 fp16 的数据精度。通过 examples/llama/build.py 进行 TensorRT 引擎构建时,需要关注如下参数:
 

  • dtype:设置为 fp16
  • use_gpt_attention_plugin:设置为 fp16,构建引擎时利用 gpt a ttention plugin 并且数据精度为 fp16
  • use_gemm_plugin:设置为 fp16,构建引擎时利用 gemm_plugin 并且数据精度为 fp16
  • use_weight_only:触发 weight only 量化
  • weight_only_precision:设置为 int4 _gptq,表示构建 W4A16 的 GPTQ 量化模型引擎
  • per_group:gptq 为group-wise 量化,所以需要触发 per-group
  • max_batch_size: TensorRT 引擎最大允许 batch size
  • max_input_len:TensorRT 引擎最大允许输入长度
  • max_output_len:TensorRT 引擎最大允许输出长度 
     

综上,我们在单卡 A10/A100 上构建 TensorRT 引擎的命令如下:

python build.py --model_dir  "${model_dir}" \--quant_safetensors_path "${quant_safetensors_path}" \--dtype float16 \--use_gpt_attention_plugin float16 \--use_gemm_plugin float16 \--use_weight_only \--weight_only_precision int4_gptq \--max_batch_size 1 \--max_input_len 2048 \--max_output_len 1024 \--per_group \--output_dir "${engin_dir}" 2>&1  | tee dev_build.log

五、测试
 

性能

下面,我们主要测试了 batch size 为 1 时,不同的输入输出长度和量化精度情况下,TensorRT-LLM 在 A10/A100 上的推理速度表现。可以看到,在 A100 上,TensorRT-LLM 的 int4 相对 fp16,最高能够带来 2.4 倍的加速,相对 int8 最高也能带来 1.7 倍的加速。
 

注意:以上性能测试均基于 TensorRT-LLM 的 0.6.1 版本

显存占用和结果测试

我们测量了模型加载后占用的显存占用情况,以及输入 2048/1024 tokens 并输出 1024/2048 tokens 时的显存使用情况;同时我们也测试了量化前后的精度情况,如下表所示:

可见,4bit 量化后,显存占用大幅缩小,在一张 A10(24GB 显存)上就能部署 34B 的大模型,具备非常好的实用性。

六、模型演示

我们通过终端命令行 [7] 以及网页聊天机器人 [8] 两种不同的方式,展示我们最终的推理效果,具体细节可以访问开源的链接。 
 

Cli Demo
 


 

Webui Demo


​​​​​​​

七、总结
 

在这篇文章中,我们介绍了如何使用 TensorRT-LLM 来加速 CodeFuse 的推理性能。具体而言,我们按照顺序展示了如何使用 GPTQ Int4 量化方法、增强 GPTQ 量化算法精度的自动对齐技术、TensorRT-LLM int4 量化模型的使用方法以及相应的评估过程。通过 TensorRT-LLM 的支持,CodeFuse 实现了较低的推理延迟和优化的部署成本。欢迎大家关注 CodeFuse 获取最新发布的更高准确率的微调大模型。 
 

参考资料:

[1] Liu, B., Chen, C., Liao, C., Gong, Z., Wang, H., Lei, Z., Liang, M., Chen, D., Shen, M., Zhou, H., Yu, H., & Li, J. (2023). MFTCoder: Boosting Code LLMs with Multitask Fine-Tuning. ArXiv, abs/2311.02303.

[2] Zhang, Z., Chen, C., Liu, B., Liao, C., Gong, Z., Yu, H., Li, J., & Wang, R. (2023). Unifying the Perspectives of NLP and Software Engineering: A Survey on Language Models for Code.

[3] https://huggingface.co/codefuse-ai/CodeFuse-CodeLlama-34B

[4] Frantar, E., Ashkboos, S., Hoefler, T., & Alistarh, D. (2022). GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers. ArXiv, abs/2210.17323.

[5] Frantar, E., Singh, S. P., Alistarh, D. (2022). Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning. Advances in Neural Information Processing Systems, 35, 4475-4488.

[6] https://huggingface.co/codefuse-ai/CodeFuse-CodeLlama-34B-4bits

[7] Codefuse-ai: https://github.com/codefuse-ai

[8] Codefuse-chatbot: https://github.com/codefuse-ai/codefuse-chatbot

这篇关于使用NVIDIA TensorRT-LLM支持CodeFuse-CodeLlama-34B上的int4量化和推理优化实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/637013

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

JDK21对虚拟线程的几种用法实践指南

《JDK21对虚拟线程的几种用法实践指南》虚拟线程是Java中的一种轻量级线程,由JVM管理,特别适合于I/O密集型任务,:本文主要介绍JDK21对虚拟线程的几种用法,文中通过代码介绍的非常详细,... 目录一、参考官方文档二、什么是虚拟线程三、几种用法1、Thread.ofVirtual().start(

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash