ILSVRC竞赛详细介绍(ImageNet Large Scale Visual Recognition Challenge)

本文主要是介绍ILSVRC竞赛详细介绍(ImageNet Large Scale Visual Recognition Challenge),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ILSVRC(ImageNet Large Scale Visual Recognition Challenge)是近年来机器视觉领域最受追捧也是最具权威的学术竞赛之一,代表了图像领域的最高水平。

ImageNet数据集是ILSVRC竞赛使用的是数据集,由斯坦福大学李飞飞教授主导,包含了超过1400万张全尺寸的有标记图片。ILSVRC比赛会每年从ImageNet数据集中抽出部分样本,以2012年为例,比赛的训练集包含1281167张图片,验证集包含50000张图片,测试集为100000张图片。

ILSVRC竞赛的项目主要包括以下几个问题:

(1)图像分类与目标定位(CLS-LOC)

图像分类的任务是要判断图片中物体在1000个分类中所属的类别,主要采用top-5错误率的评估方式,即对于每张图给出5次猜测结果,只要5次中有一次命中真实类别就算正确分类,最后统计没有命中的错误率。

2012年之前,图像分类最好的成绩是26%的错误率,2012年AlexNet的出现降低了10个百分点,错误率降到16%。2016年,公安部第三研究所选派的“搜神”(Trimps-Soushen)代表队在这一项目中获得冠军,将成绩提高到仅有2.9%的错误率。

目标定位是在分类的基础上,从图片中标识出目标物体所在的位置,用方框框定,以错误率作为评判标准。目标定位的难度在于图像分类问题可以有5次尝试机会,而在目标定位问题上,每一次都需要框定的非常准确。

目标定位项目在2015年ResNet从上一年的最好成绩25%的错误率提高到了9%。2016年,公安部第三研究所选派的“搜神”(Trimps-Soushen)代表队的错误率仅为7%。

(2)目标检测(DET)

目标检测是在定位的基础上更进一步,在图片中同时检测并定位多个类别的物体。具体来说,是要在每一张测试图片中找到属于200个类别中的所有物体,如人、勺子、水杯等。评判方式是看模型在每一个单独类别中的识别准确率,在多数类别中都获得最高准确率的队伍获胜。平均检出率mean AP(mean Average Precision)也是重要指标,一般来说,平均检出率最高的队伍也会多数的独立类别中获胜,2016年这一成绩达到了66.2。

(3)视频目标检测(VID)

视频目标检测是要检测出视频每一帧中包含的多个类别的物体,与图片目标检测任务类似。要检测的目标物体有30个类别,是目标检测200个类别的子集。此项目的最大难度在于要求算法的检测效率非常高。评判方式是在独立类别识别最准确的队伍获胜。

2016年南京信息工程大学队伍在这一项目上获得了冠军,他们提供的两个模型分别在10个类别中胜出,并且达到了平均检出率超过80%的好成绩。

(4)场景分类(Scene)

场景分类是识别图片中的场景,比如森林、剧场、会议室、商店等。也可以说,场景分类要识别图像中的背景。这个项目由MIT Places团队组织,使用Places2数据集,包括400个场景的超过1000万张图片。评判标准与图像分类相同(top-5),5次猜测中有一次命中即可,最后统计错误率。

2016年最佳成绩的错误率仅为9%。

场景分类问题中还有一个子问题是场景分割,是将图片划分成不同的区域,比如天空、道路、人、桌子等。该项目由MIT CSAIL视觉组织,使用ADE20K数据集,包含2万张图片,150个标注类别,如天空、玻璃、人、车、床等。这个项目会同时评估像素及准确率和分类IOU(Intersection of Union)

 

这篇关于ILSVRC竞赛详细介绍(ImageNet Large Scale Visual Recognition Challenge)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/636916

相关文章

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

Java中HashMap的用法详细介绍

《Java中HashMap的用法详细介绍》JavaHashMap是一种高效的数据结构,用于存储键值对,它是基于哈希表实现的,提供快速的插入、删除和查找操作,:本文主要介绍Java中HashMap... 目录一.HashMap1.基本概念2.底层数据结构:3.HashCode和equals方法为什么重写Has

Java使用正则提取字符串中的内容的详细步骤

《Java使用正则提取字符串中的内容的详细步骤》:本文主要介绍Java中使用正则表达式提取字符串内容的方法,通过Pattern和Matcher类实现,涵盖编译正则、查找匹配、分组捕获、数字与邮箱提... 目录1. 基础流程2. 关键方法说明3. 常见场景示例场景1:提取所有数字场景2:提取邮箱地址4. 高级

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Springboot项目构建时各种依赖详细介绍与依赖关系说明详解

《Springboot项目构建时各种依赖详细介绍与依赖关系说明详解》SpringBoot通过spring-boot-dependencies统一依赖版本管理,spring-boot-starter-w... 目录一、spring-boot-dependencies1.简介2. 内容概览3.核心内容结构4.

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.

Java实现TXT文件导入功能的详细步骤

《Java实现TXT文件导入功能的详细步骤》在实际开发中,很多应用场景需要将用户上传的TXT文件进行解析,并将文件中的数据导入到数据库或其他存储系统中,本文将演示如何用Java实现一个基本的TXT文件... 目录前言1. 项目需求分析2. 示例文件格式3. 实现步骤3.1. 准备数据库(假设使用 mysql

MySQL 临时表创建与使用详细说明

《MySQL临时表创建与使用详细说明》MySQL临时表是存储在内存或磁盘的临时数据表,会话结束时自动销毁,适合存储中间计算结果或临时数据集,其名称以#开头(如#TempTable),本文给大家介绍M... 目录mysql 临时表详细说明1.定义2.核心特性3.创建与使用4.典型应用场景5.生命周期管理6.注

在 Spring Boot 中连接 MySQL 数据库的详细步骤

《在SpringBoot中连接MySQL数据库的详细步骤》本文介绍了SpringBoot连接MySQL数据库的流程,添加依赖、配置连接信息、创建实体类与仓库接口,通过自动配置实现数据库操作,... 目录一、添加依赖二、配置数据库连接三、创建实体类四、创建仓库接口五、创建服务类六、创建控制器七、运行应用程序八