UCIE协议介绍--芯粒间互联标准

2024-01-23 11:52

本文主要是介绍UCIE协议介绍--芯粒间互联标准,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

UCIE协议介绍--芯粒间互联标准

  • 1 背景
  • 2 UCIE协议介绍
    • 2.1 协议层
    • 2.2 适配层
    • 2.3 物理层
    • 2.4 D2D接口
  • 3 Transmission
    • 3.1 SideBand数据包
    • 3.2 SideBand包格式
      • 3.2.1 MRd/Mwr/CfgRd/CfgWr
      • 3.2.2 Completion
      • 3.2.3 Message
    • 3.3 FDI接口信号
  • 4 链路训练
    • 4.1 PHY LSM状态介绍

1 背景

为什么发展出芯片互联技术,从而才会有芯片互联的协议标准推出;UCIE:Universal Chiplet Internet Express.
面临:1.摩尔定律失效,不能无限制趋于小;2.降低成本,方便复用,多制程Die封装;
想象成搭积木拼接的样子,有的大粒度的积木,有的小粒度的积木,进行拼接起来
类比来看:UCIE考验的是芯粒之间进行封装;
UCIE创立的宗旨就是建立Chiplet生态开放生态;

2 UCIE协议介绍

UCIE协议是一个规范标准,是基于分层的协议,其协议层各司其职,便于通用和复用,明确每层要支持的功能;
按照层级可分为:PHY层、Adapter层和Protocal层;PHY层和Adapter层之间接口为RDI;Adapter层和Protocol层之间接口为FDI;
图片: https://uploader.shimo.im/f/70xQGAADMu14EuN0.png!thumbnail?accessToken=eyJhbGciOiJIUzI1NiIsImtpZCI6ImRlZmF1bHQiLCJ0eXAiOiJKV1QifQ.eyJleHAiOjE3MDU5MjY4MTgsImZpbGVHVUlEIjoiMWxxN3JqdjRHR2lOUUQzZSIsImlhdCI6MTcwNTkyNjUxOCwiaXNzIjoidXBsb2FkZXJfYWNjZXNzX3Jlc291cmNlIiwidXNlcklkIjoyOTYyNDI0NH0.8MUW7NE4n-sWM9x9h9fiRk4cZvIyO1s14JjWymn5wWs

2.1 协议层

区分协议概念VS Mode概念

  • UCIE协议层支持PCIE6.0、CXL2.0/3.0协议,同时还支持Steaming协议(用来映射其他传输协议);支持自定义协议适配
  • Raw Mode:PCIE6.0、CXL2.0/3.0都支持一种模式叫Raw Mode,用于自定义的Streaming协议只支持RAW Mode,在这模式下,所有64B或者256B数据都由协议层来负责填充,bypass适配层,CRC、FEC和Retry都由协议层来处理;
  • Flit Mode:适配层要对协议层进行添加做2B hdr和2B CRC;协商过程中,适配层通过FDI接口把这些信息作为Link Trainning的一部分传给协议层;

2.2 适配层

当协议层发送64B Flit数据,会在前加上2B hdr(Protocol ID,Stack ID)和后面加上2B CRC值;对于256B Flit需要额外增加2B CRC;
适配层主要功能:CRC、FEC、Retry;CRC最多可以检测3bit错误;

2.3 物理层

物理层分为逻辑物理层和电气物理层;我们只需要关注逻辑物理层:即Lane概念;
数据包是通过Byte形式发出的,一个Byte占用一个Lane使用4个clk传输;Main_band采用DDR的双沿采样;
在这里插入图片描述

2.4 D2D接口

一个标准封装的UCIE module信号线即为下图所示:MainBand有16个TX Data Lane和16个RX Data Lane(先进封装对应64Lane);SideBand是一个x1 Data Lane;
在这里插入图片描述
在这里插入图片描述
Module UCIE 可以允许x1, x2和x4的配置,即MainBand+SideBand;

3 Transmission

UCIe 提供了两大数据通路:Mainband 及 Sideband。Mainband 用来传输业务数据流,Sideband 用来来处理一些 链路训练、链路管理、参数交换及寄存器访问 等非数据传输业务。Sideband 作为 Mainband 的 Back Channel,能够简化UCIE中的链路训练、链路管理和D2D参数交换,简化数据链路的建立过程、提升 Mainband 的带宽利用率、简化 Mainband 设计复杂度。
除了常规意义上的 Die 间 UCIe Link Sideband,UCIe 还有 FDI Sideband 及 RDI Sideband,在不同层次间传递边带信息。
UCIe 支持类似于 PCIe 的 4 种数据包,包括配置读写、内存读写、Completion 及 Message。

  • 对MB来说 DDR双沿采样:传输业务数据流,比如256B Flit数据传输,对于标准封装x16来说:8个UI传输1个Byte,现在16Lane:256B = 1Byte/(8UI*1Lane) * 16Lane * 128UI;
  • 对SB来说 单沿采样(SB clk固定为800M):Serial frame/packet(没有明确区分),Sideband的一个帧是64bit数据,第一帧是64bit header,间隔至少32bits的’0’(无时钟), 然后是第二帧64bit data。如果数据是32bits,第二个数据帧需要MSB补零形成64bits.
    在这里插入图片描述
    UCIe Sideband 在 D2D 参数交换、链路训练、链路管理及寄存器访问方面发挥着不可或缺的作用,但无论是实现哪一方面功能,UCIe Sideband 能够做的方式就是:① 寄存器访问;② Message 传递;
  • 寄存器访问:
  • Message传递:

3.1 SideBand数据包

UCIe Sideband 支持 4 种不同的数据包:① 配置读写(CfgRd/Wr)、② 内存读写(MRd/Wr)、③ 完成(Cpl/Cpld)及 ④ 消息(Msg/MsgD)。
分类:

  • 配置读写及内存读写都是用于寄存器访问,区别在于寄存器位于配置空间还是 MMIO 空间。若访问 UCIe 配置空间内的寄存器,比如 Host Die 访问 EP UCIe Link DVSEC 内的寄存器,则采用 CfgRd/Wr;若访问其他 MMIO 区域的寄存器,比如 D2D Adapter 内的寄存器,则采用 MRd/Wr。 根据寄存器数据位宽的不同,寄存器访问请求又可以分为 32bit 及 64bit。
  • Completion 一般对应寄存器访问请求的 Response。根据是否携带数据及返回数据的位宽不同,Completion 可以分为不带数据的 Cpl 及携带数据的 CplD,CplD 又分 32bit 数据及 64bit 数据。这里的 32/64bit 跟 PCIe 稍有不同,PCIe 中 32/64 bit 是指地址位宽,在 UCIe 中是指寄存器数据位宽。
  • Message 一般用于 D2D 间参数交换、链路训练、链路管理及其他 Vendor 自定义的场景。根据是否携带数据,消息分为 Msg 及 MsgD。
    跟 PCIe TLP Header 的 FMT+Type 字段类似,UCIe 通过 Sideband Packet 中的操作码(Opcode)来区分是哪种类型的 Sideband 数据包、是否携带数据、地址数据的位宽。

3.2 SideBand包格式

每一笔 Sideband Message 都由 64bit Header + 32 或 64bit Data 组成。若 Data 为 32bit,需要高位补 0 到 64bit。发送串行数据时,每 64bit 为 1 个 Packet,相邻 Packet 之间插入 32bit 0 以分隔不同的 Packet。每个 Clock Cycle 发送 1bit Sideband 数据,下降沿采样。
在这里插入图片描述
以位宽 32bit 的 FDI/RDI Sideband 数据接口为例,介绍下 Sideband 的数据格式。

3.2.1 MRd/Mwr/CfgRd/CfgWr

寄存器访问请求的SideBand帧格式如下图所示:
重点介绍的几个字段:

  • srcid 及 dstid 表明了 Sideband 寄存器请求的来源及目的地(协议层、Adapter、物理层,Local、Remote);
  • tag 是 Requester 添加的标签,用以将 Outstanding 请求跟响应相对应;
    在这里插入图片描述

3.2.2 Completion

Completion 的 Sideband 帧格式如图 3 所示,其跟寄存器访问请求大同小异,其中有几点不同:

  • Status,表明当前 Completion 的状态,包括 Success、UR、CA、Stall 四种状态。
  • Completion 在 FDI 上的去向不依赖于 dstid 而是依赖于 tag。没有 addr 地址字段。
    在这里插入图片描述

3.2.3 Message

带 Data Payload 和不带 Data 的 Message Sideband 帧格式如下图所示。比较关键的几个字段位 MsgCode、MsgSubcode、MsgInfo
在这里插入图片描述
在这里插入图片描述

3.3 FDI接口信号

MainBand

SideBand

Link State Management

4 链路训练

UCIE中很重要的链路训练–UCIE LSM即链路状态机理解;UCIE采用分层的LSM:FDI FSM、RDI FSM和PHY LSM。
其中FDI/RDI LSM用于UCIE链路管理,PHY LSM主要用于UCIE链路初始化及训练

4.1 PHY LSM状态介绍

在这里插入图片描述
UCIE PHY LSM包含10大状态,各状态及主要功能如下:

  • RESET,复位状态,是系统复位后或 UCIe 退出 TRAINERROR 后的状态。
  • SBINIT,Sideband 初始化,在该状态对 Sideband 进行初始化,选择可用的 SB Lane。
  • MBINIT,Mainband 初始化,在该状态对 Mainband 进行初始化、修复坏的 MB Lane。该状态下 Mainband 处于最低速。
  • MBTRAIN,Mainband 训练,在该状态对 Mainband 的 Clock、Valid、Data 等 Lane 进行训练,使得 UCIe 链路工作在链路两端设备协商* 好的最高速或协商速率之下物理所能达到的最高速。跟 PCIe 不同,PCIe 是从 Gen1 最低速开始一点点往最高速进行训练的,但 UCIe 除了在初始化的时候为最低速,其在 MBTRAIN 状态对 Mainband 进行训练时一次切速到最高速进行训练,训练失败的话再进行降速或者减宽。
  • LINKINIT,链路管理状态,用以 D2D Adapter 完成初始链路管理。该状态时,进行 RDI Bring Up。
  • ACTIVE,UCIe 的正常工作状态,该状态时进行 Mainband 的数据传输,对应 PCIe 的 L0 状态。
  • L1/L2低功耗状态,处于这两种状态下的 UCIe Module 功耗较低,处于 L2 状态的 UCIe Module 比 L1 睡眠程度更深、功耗更低。L1 可以直接退出到 MBTRAIN 状态,免去 SBINIT 及 MBINIT 的过程,但 L2 只能退出到 RESET 状态,重新进行链路的初始化。
  • PHYRETRAIN,需要重新对链路进行链路初始化及训练时,进入该状态。
  • TRAINERROR,链路训练失败后进入该状态。

PHY 的初始化及训练过程中,Sideband、Mainband 是分开进行初始化和训练的。首先对 Sideband 进行初始化,使 Sideband 进入正常工作状态,便于后续初始化及训练过程中在 UCIe Link 上传递 Sideband Msg;然后进行 Mainband 初始化,UCIe Link 两侧的 Module 进行参数交换及协商、链路修复等工作,使 Mainband 能够工作在最低速(4 GT/s)。
Timeout机制:除了RESET和TRAINEERROR之外,所有状态都有个8ms超时退出机制

【Ref】
[1] https://new.qq.com/rain/a/20220616A073AH00
[2] https://developer.aliyun.com/article/1073772
[3] https://blog.csdn.net/weixin_40357487/article/details/127362477

这篇关于UCIE协议介绍--芯粒间互联标准的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/636329

相关文章

MybatisPlus service接口功能介绍

《MybatisPlusservice接口功能介绍》:本文主要介绍MybatisPlusservice接口功能介绍,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录Service接口基本用法进阶用法总结:Lambda方法Service接口基本用法MyBATisP

MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)

《MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)》掌握多表联查(INNERJOIN,LEFTJOIN,RIGHTJOIN,FULLJOIN)和子查询(标量、列、行、表子查询、相关/非相关、... 目录第一部分:多表联查 (JOIN Operations)1. 连接的类型 (JOIN Types)

java中BigDecimal里面的subtract函数介绍及实现方法

《java中BigDecimal里面的subtract函数介绍及实现方法》在Java中实现减法操作需要根据数据类型选择不同方法,主要分为数值型减法和字符串减法两种场景,本文给大家介绍java中BigD... 目录Java中BigDecimal里面的subtract函数的意思?一、数值型减法(高精度计算)1.

Pytorch介绍与安装过程

《Pytorch介绍与安装过程》PyTorch因其直观的设计、卓越的灵活性以及强大的动态计算图功能,迅速在学术界和工业界获得了广泛认可,成为当前深度学习研究和开发的主流工具之一,本文给大家介绍Pyto... 目录1、Pytorch介绍1.1、核心理念1.2、核心组件与功能1.3、适用场景与优势总结1.4、优

Java实现本地缓存的常用方案介绍

《Java实现本地缓存的常用方案介绍》本地缓存的代表技术主要有HashMap,GuavaCache,Caffeine和Encahche,这篇文章主要来和大家聊聊java利用这些技术分别实现本地缓存的方... 目录本地缓存实现方式HashMapConcurrentHashMapGuava CacheCaffe

Spring Security介绍及配置实现代码

《SpringSecurity介绍及配置实现代码》SpringSecurity是一个功能强大的Java安全框架,它提供了全面的安全认证(Authentication)和授权(Authorizatio... 目录简介Spring Security配置配置实现代码简介Spring Security是一个功能强

go rate 原生标准限速库的使用

《gorate原生标准限速库的使用》本文主要介绍了Go标准库golang.org/x/time/rate实现限流,采用令牌桶算法控制请求速率,提供Allow/Reserve/Wait方法,具有一定... 目录介绍安装API介绍rate.NewLimiter:创建限流器limiter.Allow():请求是否

JSR-107缓存规范介绍

《JSR-107缓存规范介绍》JSR是JavaSpecificationRequests的缩写,意思是Java规范提案,下面给大家介绍JSR-107缓存规范的相关知识,感兴趣的朋友一起看看吧... 目录1.什么是jsR-1072.应用调用缓存图示3.JSR-107规范使用4.Spring 缓存机制缓存是每一

Java中 instanceof 的用法详细介绍

《Java中instanceof的用法详细介绍》在Java中,instanceof是一个二元运算符(类型比较操作符),用于检查一个对象是否是某个特定类、接口的实例,或者是否是其子类的实例,这篇文章... 目录引言基本语法基本作用1. 检查对象是否是指定类的实例2. 检查对象是否是子类的实例3. 检查对象是否

什么是ReFS 文件系统? ntfs和refs的优缺点区别介绍

《什么是ReFS文件系统?ntfs和refs的优缺点区别介绍》最近有用户在Win11Insider的安装界面中发现,可以使用ReFS来格式化硬盘,这是不是意味着,ReFS有望在未来成为W... 数十年以来,Windows 系统一直将 NTFS 作为「内置硬盘」的默认文件系统。不过近些年来,微软还在研发一款名