C++面试:跳表

2024-01-23 11:04
文章标签 c++ 面试 跳表

本文主要是介绍C++面试:跳表,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        

目录

跳表介绍 

跳表的特点:

跳表的应用场景:

C++ 代码示例:

跳表的特性

跳表示例 

总结


        跳表(Skip List)是一种支持快速搜索、插入和删除的数据结构,具有相对简单的实现和较高的查询性能。下面是跳表的详细介绍和一个简单的 C++ 代码示例:

跳表介绍 

跳表的特点:

  1. 有序结构: 跳表中的每个节点都包含一个元素,并且节点按照元素的大小有序排列。
  2. 多层索引: 跳表通过维护多层索引来实现快速搜索。每一层都是一个有序链表,最底层包含所有元素,而每上一层的节点是下一层节点的一部分。
  3. 跳跃式访问: 通过索引层,跳表允许在较高层直接跳过一些节点,从而提高搜索效率。

跳表的应用场景:

  1. 有序集合的实现: 用于需要频繁的插入、删除和搜索操作的有序数据集合,如 Redis 中的有序集合(Sorted Set)。
  2. 替代平衡树: 在某些场景下,跳表可以作为对平衡树的一种替代,具有更简单的实现和较好的性能。

C++ 代码示例:

#include <iostream>
#include <vector>
#include <cstdlib>const int MAX_LEVEL = 16;  // 最大层数// 跳表节点定义
struct Node {int value;std::vector<Node*> forward;  // 每层的指针数组Node(int val, int level) : value(val), forward(level, nullptr) {}
};// 跳表定义
class SkipList {
private:Node* header;  // 头节点int level;     // 当前跳表的最大层数public:SkipList() : level(1) {header = new Node(0, MAX_LEVEL);}// 随机生成一个层数int randomLevel() {int lvl = 1;while ((rand() % 2) && (lvl < MAX_LEVEL))lvl++;return lvl;}// 插入一个元素void insert(int val) {std::vector<Node*> update(MAX_LEVEL, nullptr);Node* current = header;// 从最高层到底层,找到每一层的插入位置for (int i = level - 1; i >= 0; i--) {while (current->forward[i] != nullptr && current->forward[i]->value < val) {current = current->forward[i];}update[i] = current;}// 随机生成一个层数int newLevel = randomLevel();// 如果新的层数比当前层数高,则更新 updateif (newLevel > level) {for (int i = level; i < newLevel; i++) {update[i] = header;}level = newLevel;}// 创建新节点Node* newNode = new Node(val, newLevel);// 更新每一层的指针for (int i = 0; i < newLevel; i++) {newNode->forward[i] = update[i]->forward[i];update[i]->forward[i] = newNode;}}// 搜索一个元素,返回是否存在bool search(int val) {Node* current = header;// 从最高层到底层,搜索每一层的节点for (int i = level - 1; i >= 0; i--) {while (current->forward[i] != nullptr && current->forward[i]->value < val) {current = current->forward[i];}}// 到达底层,判断是否找到目标元素if (current->forward[0] != nullptr && current->forward[0]->value == val) {return true;} else {return false;}}// 删除一个元素void remove(int val) {std::vector<Node*> update(MAX_LEVEL, nullptr);Node* current = header;// 从最高层到底层,找到每一层的删除位置for (int i = level - 1; i >= 0; i--) {while (current->forward[i] != nullptr && current->forward[i]->value < val) {current = current->forward[i];}update[i] = current;}// 到达底层,判断是否找到目标元素if (current->forward[0] != nullptr && current->forward[0]->value == val) {// 更新每一层的指针,删除目标节点for (int i = 0; i < level; i++) {if (update[i]->forward[i] != current->forward[i]) {break;}update[i]->forward[i] = current->forward[i]->forward[i];}// 如果删除的是最高层的节点,更新层数while (level > 1 && header->forward[level - 1] == nullptr) {level--;}// 释放节点内存delete current;}}// 打印跳表void printSkipList() {for (int i = level - 1; i >= 0; i--) {Node* current = header->forward[i];std::cout << "Level " << i << ": ";while (current != nullptr) {std::cout << current->value << " ";current = current->forward[i];}std::cout << std::endl;}std::cout << "-----------------------" << std::endl;}
};int main() {// 创建跳表SkipList skipList;// 插入一些元素skipList.insert(3);skipList.insert(6);skipList.insert(7);skipList.insert(9);skipList.insert(12);// 打印跳表skipList.printSkipList();// 搜索元素int searchValue = 7;if (skipList.search(searchValue)) {std::cout << "Element " << searchValue << " found in the skip list." << std::endl;} else {std::cout << "Element " << searchValue << " not found in the skip list." << std::endl;}// 删除元素int removeValue = 6;skipList.remove(removeValue);// 打印删除后的跳表skipList.printSkipList();return 0;
}

        这是一个简单的跳表实现,包括插入、搜索和删除操作。在实际应用中,跳表的层数、随机层数的方式以及其他细节可以根据具体需求进行调整。

跳表的特性

  1. 有序性: 跳表中的每个节点按照元素的大小有序排列。这使得在跳表中可以快速定位和搜索元素。

  2. 多层索引: 跳表通过维护多层索引来实现快速搜索。每一层都是一个有序链表,最底层包含所有元素,而每一层的节点是下一层节点的子集。这样的多层索引结构可以提高搜索效率。

  3. 跳跃式访问: 通过多层索引,跳表允许在较高层直接跳过一些节点,从而实现跳跃式的访问。这种设计类似于在二分查找中直接跳过一半的元素,从而提高了搜索的效率。

  4. 平衡性: 跳表的设计通过随机层数和灵活的插入策略,保持了跳表的平衡性。这有助于避免类似于二叉搜索树中的不平衡情况,使得操作的时间复杂度更加可控。

  5. 简单实现: 跳表相对于其他高效的数据结构,如平衡树,实现相对简单。它不需要像平衡树那样复杂的平衡维护,使得代码的实现和维护相对容易。

  6. 支持动态操作: 跳表天生适合动态操作,包括插入和删除。由于插入和删除操作只需要调整相邻节点的指针,而不需要进行全局的平衡调整,因此操作的效率较高。

  7. 适应范围广: 跳表可以应用于各种有序数据集合的场景,特别是在需要频繁插入、删除和搜索操作的场景中,其性能表现优异。

        跳表的这些特性使得它在一些应用场景中具有明显的优势,尤其在无法提前知道数据分布情况的情形下,跳表能够以较简单的方式维护有序性和高效操作。

跳表示例 

        下面是一个使用 C++ 实现的跳表例子,包含插入、搜索、删除和打印操作。在这个例子中,我使用了模板类以支持不同类型的元素。

#include <iostream>
#include <vector>
#include <cstdlib>// 跳表节点定义
template <typename T>
struct Node {T value;std::vector<Node*> forward;Node(T val, int level) : value(val), forward(level, nullptr) {}
};// 跳表定义
template <typename T>
class SkipList {
private:Node<T>* header;int level;public:SkipList() : level(1) {header = new Node<T>(T(), MAX_LEVEL);  // 初始值为 T() 的头节点}// 随机生成一个层数int randomLevel() {int lvl = 1;while ((rand() % 2) && (lvl < MAX_LEVEL))lvl++;return lvl;}// 插入一个元素void insert(const T& val) {std::vector<Node<T>*> update(MAX_LEVEL, nullptr);Node<T>* current = header;// 从最高层到底层,找到每一层的插入位置for (int i = level - 1; i >= 0; i--) {while (current->forward[i] != nullptr && current->forward[i]->value < val) {current = current->forward[i];}update[i] = current;}// 随机生成一个层数int newLevel = randomLevel();// 如果新的层数比当前层数高,则更新 updateif (newLevel > level) {for (int i = level; i < newLevel; i++) {update[i] = header;}level = newLevel;}// 创建新节点Node<T>* newNode = new Node<T>(val, newLevel);// 更新每一层的指针for (int i = 0; i < newLevel; i++) {newNode->forward[i] = update[i]->forward[i];update[i]->forward[i] = newNode;}}// 搜索一个元素,返回是否存在bool search(const T& val) const {Node<T>* current = header;// 从最高层到底层,搜索每一层的节点for (int i = level - 1; i >= 0; i--) {while (current->forward[i] != nullptr && current->forward[i]->value < val) {current = current->forward[i];}}// 到达底层,判断是否找到目标元素return (current->forward[0] != nullptr && current->forward[0]->value == val);}// 删除一个元素void remove(const T& val) {std::vector<Node<T>*> update(MAX_LEVEL, nullptr);Node<T>* current = header;// 从最高层到底层,找到每一层的删除位置for (int i = level - 1; i >= 0; i--) {while (current->forward[i] != nullptr && current->forward[i]->value < val) {current = current->forward[i];}update[i] = current;}// 到达底层,判断是否找到目标元素if (current->forward[0] != nullptr && current->forward[0]->value == val) {// 更新每一层的指针,删除目标节点for (int i = 0; i < level; i++) {if (update[i]->forward[i] != current->forward[i]) {break;}update[i]->forward[i] = current->forward[i]->forward[i];}// 如果删除的是最高层的节点,更新层数while (level > 1 && header->forward[level - 1] == nullptr) {level--;}// 释放节点内存delete current;}}// 打印跳表void printSkipList() const {for (int i = level - 1; i >= 0; i--) {Node<T>* current = header->forward[i];std::cout << "Level " << i << ": ";while (current != nullptr) {std::cout << current->value << " ";current = current->forward[i];}std::cout << std::endl;}std::cout << "-----------------------" << std::endl;}
};int main() {// 创建跳表SkipList<int> skipList;// 插入一些元素skipList.insert(3);skipList.insert(6);skipList.insert(7);skipList.insert(9);skipList.insert(12);// 打印跳表skipList.printSkipList();// 搜索元素int searchValue = 7;if (skipList.search(searchValue)) {std::cout << "Element " << searchValue << " found in the skip list." << std::endl;} else {std::cout << "Element " << searchValue << " not found in the skip list." << std::endl;}// 删除元素int removeValue = 6;skipList.remove(removeValue);// 打印删除后的跳表skipList.printSkipList();return 0;
}

在这个例子中,使用跳表有几个考虑因素:

  1. 高效的搜索操作: 跳表的搜索操作时间复杂度为 O(log n),其中 n 是跳表中的元素个数。相较于普通链表的线性搜索,跳表提供了更快的搜索速度。

  2. 支持动态操作: 跳表天生适合动态操作,包括插入和删除。由于插入和删除操作只需要调整相邻节点的指针,而不需要进行全局的平衡调整,因此在元素的动态更新场景下,跳表相对于其他数据结构更具有优势。

  3. 简单实现: 跳表的实现相对简单,不需要像平衡树那样复杂的平衡维护。这使得它在实际应用中更容易实现和维护。

  4. 对比其他数据结构: 在这个示例中,使用跳表的主要目的是演示跳表的基本原理和操作,并不代表它是绝对优于其他数据结构的选择。具体选择数据结构的决策取决于实际应用场景、数据分布情况以及对不同操作的需求。

总结

特性:

  1. 有序性: 跳表中的每个节点按照元素的大小有序排列,使得在跳表中可以快速定位和搜索元素。
  2. 多层索引: 跳表通过维护多层索引来实现快速搜索,每一层都是一个有序链表,最底层包含所有元素。
  3. 跳跃式访问: 通过多层索引,跳表允许在较高层直接跳过一些节点,实现跳跃式的访问,提高搜索效率。
  4. 平衡性: 通过随机层数和灵活的插入策略,保持了跳表的平衡性,避免了类似于二叉搜索树中的不平衡情况。
  5. 支持动态操作: 跳表天生适合动态操作,包括插入和删除,操作的时间复杂度较低。

应用场景:

  1. 有序集合的实现: 适用于需要频繁插入、删除和搜索操作的有序数据集合,例如在 Redis 中的有序集合(Sorted Set)实现中使用了跳表。
  2. 替代平衡树: 在某些场景下,跳表可以作为对平衡树的一种替代,相对简单的实现和较好的性能表现使得它成为一种备选选择。
  3. 动态数据库索引: 在数据库中,跳表可以用作动态索引结构,适用于动态更新和频繁搜索的情况。
  4. 高效的动态排序: 在需要频繁的动态排序操作的场景下,跳表的性能可能优于传统的排序算法。

总体评价:

  • 优势: 跳表提供了一种在有序数据集合中实现高效的动态操作的方式,相较于平衡树结构实现较为简单,适用于需要频繁更新和搜索的场景。
  • 劣势: 跳表相对于其他数据结构可能占用更多内存,对于某些内存敏感的场景,可能不是最优选择。在一些特定的搜索密集型场景中,红黑树等平衡树结构也具有竞争力。

总体而言,跳表在一些动态、搜索密集的应用场景中表现出色,但在具体选择时,需要综合考虑数据分布、内存使用、实现难度等因素。

这篇关于C++面试:跳表的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/636187

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

C++读写word文档(.docx)DuckX库的使用详解

《C++读写word文档(.docx)DuckX库的使用详解》DuckX是C++库,用于创建/编辑.docx文件,支持读取文档、添加段落/片段、编辑表格,解决中文乱码需更改编码方案,进阶功能含文本替换... 目录一、基本用法1. 读取文档3. 添加段落4. 添加片段3. 编辑表格二、进阶用法1. 文本替换2

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c