C++面试:跳表

2024-01-23 11:04
文章标签 c++ 面试 跳表

本文主要是介绍C++面试:跳表,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        

目录

跳表介绍 

跳表的特点:

跳表的应用场景:

C++ 代码示例:

跳表的特性

跳表示例 

总结


        跳表(Skip List)是一种支持快速搜索、插入和删除的数据结构,具有相对简单的实现和较高的查询性能。下面是跳表的详细介绍和一个简单的 C++ 代码示例:

跳表介绍 

跳表的特点:

  1. 有序结构: 跳表中的每个节点都包含一个元素,并且节点按照元素的大小有序排列。
  2. 多层索引: 跳表通过维护多层索引来实现快速搜索。每一层都是一个有序链表,最底层包含所有元素,而每上一层的节点是下一层节点的一部分。
  3. 跳跃式访问: 通过索引层,跳表允许在较高层直接跳过一些节点,从而提高搜索效率。

跳表的应用场景:

  1. 有序集合的实现: 用于需要频繁的插入、删除和搜索操作的有序数据集合,如 Redis 中的有序集合(Sorted Set)。
  2. 替代平衡树: 在某些场景下,跳表可以作为对平衡树的一种替代,具有更简单的实现和较好的性能。

C++ 代码示例:

#include <iostream>
#include <vector>
#include <cstdlib>const int MAX_LEVEL = 16;  // 最大层数// 跳表节点定义
struct Node {int value;std::vector<Node*> forward;  // 每层的指针数组Node(int val, int level) : value(val), forward(level, nullptr) {}
};// 跳表定义
class SkipList {
private:Node* header;  // 头节点int level;     // 当前跳表的最大层数public:SkipList() : level(1) {header = new Node(0, MAX_LEVEL);}// 随机生成一个层数int randomLevel() {int lvl = 1;while ((rand() % 2) && (lvl < MAX_LEVEL))lvl++;return lvl;}// 插入一个元素void insert(int val) {std::vector<Node*> update(MAX_LEVEL, nullptr);Node* current = header;// 从最高层到底层,找到每一层的插入位置for (int i = level - 1; i >= 0; i--) {while (current->forward[i] != nullptr && current->forward[i]->value < val) {current = current->forward[i];}update[i] = current;}// 随机生成一个层数int newLevel = randomLevel();// 如果新的层数比当前层数高,则更新 updateif (newLevel > level) {for (int i = level; i < newLevel; i++) {update[i] = header;}level = newLevel;}// 创建新节点Node* newNode = new Node(val, newLevel);// 更新每一层的指针for (int i = 0; i < newLevel; i++) {newNode->forward[i] = update[i]->forward[i];update[i]->forward[i] = newNode;}}// 搜索一个元素,返回是否存在bool search(int val) {Node* current = header;// 从最高层到底层,搜索每一层的节点for (int i = level - 1; i >= 0; i--) {while (current->forward[i] != nullptr && current->forward[i]->value < val) {current = current->forward[i];}}// 到达底层,判断是否找到目标元素if (current->forward[0] != nullptr && current->forward[0]->value == val) {return true;} else {return false;}}// 删除一个元素void remove(int val) {std::vector<Node*> update(MAX_LEVEL, nullptr);Node* current = header;// 从最高层到底层,找到每一层的删除位置for (int i = level - 1; i >= 0; i--) {while (current->forward[i] != nullptr && current->forward[i]->value < val) {current = current->forward[i];}update[i] = current;}// 到达底层,判断是否找到目标元素if (current->forward[0] != nullptr && current->forward[0]->value == val) {// 更新每一层的指针,删除目标节点for (int i = 0; i < level; i++) {if (update[i]->forward[i] != current->forward[i]) {break;}update[i]->forward[i] = current->forward[i]->forward[i];}// 如果删除的是最高层的节点,更新层数while (level > 1 && header->forward[level - 1] == nullptr) {level--;}// 释放节点内存delete current;}}// 打印跳表void printSkipList() {for (int i = level - 1; i >= 0; i--) {Node* current = header->forward[i];std::cout << "Level " << i << ": ";while (current != nullptr) {std::cout << current->value << " ";current = current->forward[i];}std::cout << std::endl;}std::cout << "-----------------------" << std::endl;}
};int main() {// 创建跳表SkipList skipList;// 插入一些元素skipList.insert(3);skipList.insert(6);skipList.insert(7);skipList.insert(9);skipList.insert(12);// 打印跳表skipList.printSkipList();// 搜索元素int searchValue = 7;if (skipList.search(searchValue)) {std::cout << "Element " << searchValue << " found in the skip list." << std::endl;} else {std::cout << "Element " << searchValue << " not found in the skip list." << std::endl;}// 删除元素int removeValue = 6;skipList.remove(removeValue);// 打印删除后的跳表skipList.printSkipList();return 0;
}

        这是一个简单的跳表实现,包括插入、搜索和删除操作。在实际应用中,跳表的层数、随机层数的方式以及其他细节可以根据具体需求进行调整。

跳表的特性

  1. 有序性: 跳表中的每个节点按照元素的大小有序排列。这使得在跳表中可以快速定位和搜索元素。

  2. 多层索引: 跳表通过维护多层索引来实现快速搜索。每一层都是一个有序链表,最底层包含所有元素,而每一层的节点是下一层节点的子集。这样的多层索引结构可以提高搜索效率。

  3. 跳跃式访问: 通过多层索引,跳表允许在较高层直接跳过一些节点,从而实现跳跃式的访问。这种设计类似于在二分查找中直接跳过一半的元素,从而提高了搜索的效率。

  4. 平衡性: 跳表的设计通过随机层数和灵活的插入策略,保持了跳表的平衡性。这有助于避免类似于二叉搜索树中的不平衡情况,使得操作的时间复杂度更加可控。

  5. 简单实现: 跳表相对于其他高效的数据结构,如平衡树,实现相对简单。它不需要像平衡树那样复杂的平衡维护,使得代码的实现和维护相对容易。

  6. 支持动态操作: 跳表天生适合动态操作,包括插入和删除。由于插入和删除操作只需要调整相邻节点的指针,而不需要进行全局的平衡调整,因此操作的效率较高。

  7. 适应范围广: 跳表可以应用于各种有序数据集合的场景,特别是在需要频繁插入、删除和搜索操作的场景中,其性能表现优异。

        跳表的这些特性使得它在一些应用场景中具有明显的优势,尤其在无法提前知道数据分布情况的情形下,跳表能够以较简单的方式维护有序性和高效操作。

跳表示例 

        下面是一个使用 C++ 实现的跳表例子,包含插入、搜索、删除和打印操作。在这个例子中,我使用了模板类以支持不同类型的元素。

#include <iostream>
#include <vector>
#include <cstdlib>// 跳表节点定义
template <typename T>
struct Node {T value;std::vector<Node*> forward;Node(T val, int level) : value(val), forward(level, nullptr) {}
};// 跳表定义
template <typename T>
class SkipList {
private:Node<T>* header;int level;public:SkipList() : level(1) {header = new Node<T>(T(), MAX_LEVEL);  // 初始值为 T() 的头节点}// 随机生成一个层数int randomLevel() {int lvl = 1;while ((rand() % 2) && (lvl < MAX_LEVEL))lvl++;return lvl;}// 插入一个元素void insert(const T& val) {std::vector<Node<T>*> update(MAX_LEVEL, nullptr);Node<T>* current = header;// 从最高层到底层,找到每一层的插入位置for (int i = level - 1; i >= 0; i--) {while (current->forward[i] != nullptr && current->forward[i]->value < val) {current = current->forward[i];}update[i] = current;}// 随机生成一个层数int newLevel = randomLevel();// 如果新的层数比当前层数高,则更新 updateif (newLevel > level) {for (int i = level; i < newLevel; i++) {update[i] = header;}level = newLevel;}// 创建新节点Node<T>* newNode = new Node<T>(val, newLevel);// 更新每一层的指针for (int i = 0; i < newLevel; i++) {newNode->forward[i] = update[i]->forward[i];update[i]->forward[i] = newNode;}}// 搜索一个元素,返回是否存在bool search(const T& val) const {Node<T>* current = header;// 从最高层到底层,搜索每一层的节点for (int i = level - 1; i >= 0; i--) {while (current->forward[i] != nullptr && current->forward[i]->value < val) {current = current->forward[i];}}// 到达底层,判断是否找到目标元素return (current->forward[0] != nullptr && current->forward[0]->value == val);}// 删除一个元素void remove(const T& val) {std::vector<Node<T>*> update(MAX_LEVEL, nullptr);Node<T>* current = header;// 从最高层到底层,找到每一层的删除位置for (int i = level - 1; i >= 0; i--) {while (current->forward[i] != nullptr && current->forward[i]->value < val) {current = current->forward[i];}update[i] = current;}// 到达底层,判断是否找到目标元素if (current->forward[0] != nullptr && current->forward[0]->value == val) {// 更新每一层的指针,删除目标节点for (int i = 0; i < level; i++) {if (update[i]->forward[i] != current->forward[i]) {break;}update[i]->forward[i] = current->forward[i]->forward[i];}// 如果删除的是最高层的节点,更新层数while (level > 1 && header->forward[level - 1] == nullptr) {level--;}// 释放节点内存delete current;}}// 打印跳表void printSkipList() const {for (int i = level - 1; i >= 0; i--) {Node<T>* current = header->forward[i];std::cout << "Level " << i << ": ";while (current != nullptr) {std::cout << current->value << " ";current = current->forward[i];}std::cout << std::endl;}std::cout << "-----------------------" << std::endl;}
};int main() {// 创建跳表SkipList<int> skipList;// 插入一些元素skipList.insert(3);skipList.insert(6);skipList.insert(7);skipList.insert(9);skipList.insert(12);// 打印跳表skipList.printSkipList();// 搜索元素int searchValue = 7;if (skipList.search(searchValue)) {std::cout << "Element " << searchValue << " found in the skip list." << std::endl;} else {std::cout << "Element " << searchValue << " not found in the skip list." << std::endl;}// 删除元素int removeValue = 6;skipList.remove(removeValue);// 打印删除后的跳表skipList.printSkipList();return 0;
}

在这个例子中,使用跳表有几个考虑因素:

  1. 高效的搜索操作: 跳表的搜索操作时间复杂度为 O(log n),其中 n 是跳表中的元素个数。相较于普通链表的线性搜索,跳表提供了更快的搜索速度。

  2. 支持动态操作: 跳表天生适合动态操作,包括插入和删除。由于插入和删除操作只需要调整相邻节点的指针,而不需要进行全局的平衡调整,因此在元素的动态更新场景下,跳表相对于其他数据结构更具有优势。

  3. 简单实现: 跳表的实现相对简单,不需要像平衡树那样复杂的平衡维护。这使得它在实际应用中更容易实现和维护。

  4. 对比其他数据结构: 在这个示例中,使用跳表的主要目的是演示跳表的基本原理和操作,并不代表它是绝对优于其他数据结构的选择。具体选择数据结构的决策取决于实际应用场景、数据分布情况以及对不同操作的需求。

总结

特性:

  1. 有序性: 跳表中的每个节点按照元素的大小有序排列,使得在跳表中可以快速定位和搜索元素。
  2. 多层索引: 跳表通过维护多层索引来实现快速搜索,每一层都是一个有序链表,最底层包含所有元素。
  3. 跳跃式访问: 通过多层索引,跳表允许在较高层直接跳过一些节点,实现跳跃式的访问,提高搜索效率。
  4. 平衡性: 通过随机层数和灵活的插入策略,保持了跳表的平衡性,避免了类似于二叉搜索树中的不平衡情况。
  5. 支持动态操作: 跳表天生适合动态操作,包括插入和删除,操作的时间复杂度较低。

应用场景:

  1. 有序集合的实现: 适用于需要频繁插入、删除和搜索操作的有序数据集合,例如在 Redis 中的有序集合(Sorted Set)实现中使用了跳表。
  2. 替代平衡树: 在某些场景下,跳表可以作为对平衡树的一种替代,相对简单的实现和较好的性能表现使得它成为一种备选选择。
  3. 动态数据库索引: 在数据库中,跳表可以用作动态索引结构,适用于动态更新和频繁搜索的情况。
  4. 高效的动态排序: 在需要频繁的动态排序操作的场景下,跳表的性能可能优于传统的排序算法。

总体评价:

  • 优势: 跳表提供了一种在有序数据集合中实现高效的动态操作的方式,相较于平衡树结构实现较为简单,适用于需要频繁更新和搜索的场景。
  • 劣势: 跳表相对于其他数据结构可能占用更多内存,对于某些内存敏感的场景,可能不是最优选择。在一些特定的搜索密集型场景中,红黑树等平衡树结构也具有竞争力。

总体而言,跳表在一些动态、搜索密集的应用场景中表现出色,但在具体选择时,需要综合考虑数据分布、内存使用、实现难度等因素。

这篇关于C++面试:跳表的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/636187

相关文章

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

C++作用域和标识符查找规则详解

《C++作用域和标识符查找规则详解》在C++中,作用域(Scope)和标识符查找(IdentifierLookup)是理解代码行为的重要概念,本文将详细介绍这些规则,并通过实例来说明它们的工作原理,需... 目录作用域标识符查找规则1. 普通查找(Ordinary Lookup)2. 限定查找(Qualif

C/C++ chrono简单使用场景示例详解

《C/C++chrono简单使用场景示例详解》:本文主要介绍C/C++chrono简单使用场景示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录chrono使用场景举例1 输出格式化字符串chrono使用场景China编程举例1 输出格式化字符串示

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元