leetcode第 381 场周赛最后一题 差分,对称的处理

2024-01-23 08:12

本文主要是介绍leetcode第 381 场周赛最后一题 差分,对称的处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第 381 场周赛 - 力扣(LeetCode)最后一题3017. 按距离统计房屋对数目 II - 力扣(LeetCode)

dijkstra超时了,看了灵神的解题方法力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台,其实是差分优化的暴力统计

灵神说的“撤销操作”,就是先不加那条xy新路,统计出所有距离对数,然后再加上那条路做修改。做修改需要推一下变短的位置。

灵神封装写的特别好,这道题不封装一下,有问题改起来很麻烦。

目录

统计原始距离对数:

找规律:

灵神暴力左右:

差分:

做修改:

第一种:

第二种:

关于小于区间右端点(x+y)/2:(等于过不了)

当 x==y 及x == y+1时没有缩短任何距离。不需要操作

参考代码:


统计原始距离对数:

这里说两种方法,第一种是自己想的找规律(其实踩坑了,没弄好差分),第二种就是灵神暴力,时间复杂度是相同的O(n)

找规律:

分别对奇数和偶数找一下:

第一行1 2 3 4 5五个数是题目里的房屋,左边第一列是距离 t,表中的则是与这个房屋距离为t的房屋数。

我们暴力完成这个表。

比如第一行,对1来说距离为1的只有2一个,所以是1;对2来说距离为1的是1和3,即两个。

会发现每一行会比前一行少2,而第一行也是“1 2 2 .. 2 2 1”可以列式算出来,所以可以距离为1到n的房屋对数数组(我们要返回的数组)给初始化。

        //      1 2 3 4 5//1:    1 2 2 2 1   //2就算最多啦//2:    1 1 2 1 1   //-2//3:    1 1 0 1 1   //-2//4:    1 0 0 0 1   //-2//5:    0 0 0 0 0   //-2 这个要减成0//      1 2 3 4 5 6//1:    1 2 2 2 2 1//2:    1 1 2 2 1 1     //-2//3:    1 1 1 1 1 1     //-2//4:    1 1 0 0 1 1     //-2//5:    1 0 0 0 0 1     //-2//6:    0 0 0 0 0 0     //-2

注意:

房屋数为n的情况下,不存在距离为n的房屋对(最大也是1和n之间差n-1),所以返回数组最后一位必定是0.

灵神暴力左右:

对于房屋 i ,距离为1的就是 i-1 和 i+1 ,距离为2的就是 i-2 和 i+2 ,......

一直到两边,可得左侧距离最大为i-1,右侧为n-i,

所以距离为 1 ~ i -1  的都要加一对,距离为 1 ~ n - i 的也都要加一对

差分:

而我们正好用的是差分数组。差分就是第一位为初始值,后面的都表示和前一位相差的值。对这种连续的情况,用差分是秒算的。

做修改:

首先看情况,其实就四种会变短,而这四种是对称的,也就是说其实就两种情况。

我们 i 为始点,j为终点,(x,y)为新增的路,我们让x<y。

第一种:

i 在 x左边    i <= x 

只有当 j 在y左右的时候才会缩短距离:

j在y左的位置的计算:就是算什么时候走新路更短

 

偶数的话会有一个点,这个点不走(大于号嘛,不取)

奇数的话本是两点之间,正好向下取整了,如下图的a,中间是正好,所以b可取

第二种:

x < i < (x+y)/2      剩下的区间就是对称的

第二种的y左这个j的计算

关于小于区间右端点(x+y)/2:(等于过不了)

这个短点也没有缩短的:

奇数情况        x -  - i - - y       很明显i到x和y一样远

偶数情况        x - i - - y          i直接到y为3,i到x再到y为2+1 == 3

所以<(x+y)/2

——————

当 x==y 及x == y+1时没有缩短任何距离。不需要操作

参考代码:

灵神那个写的好,我没封装。不过对称的处理可以看看,处理是类似的。

他用函数会还原,我是用个if 还原的,然而if条件有关于对称用的值的,所以后面可能进不去,还原失败。

class Solution {
#define ll long longvector<ll>ans;void add(int l, int r, int v){if(l>r)return;ans[l] += v;ans[r + 1] -= v;}
public:vector<long long> countOfPairs(int n, int x, int y){if (x>y)swap(x, y);ans = vector<ll>(n + 2);// ans[1] = n + n - 2;// for (int i = 2; i <= n - 1; i++)// {//     ans[i] = -2;// }//for (int k = 1; k <= n; k++){int i = k,orx = x,ory = y;add(1, i - 1, 1);add(1, n - i, 1);if (y - x < 2)continue;if (k > (orx + ory + 1) / 2){i = n + 1 - k;x = n + 1 - ory;y = n + 1 - orx;}if (i <= x){//1.j>=yadd(y - i, n - i,-1);//add(x-i+1,x-i+1+n-y, 1);没有想用“缩短的距离”int dec = y - x - 1;//比如 2 3 连完还是1,缩短了0,3-2-1add(y - i - dec, n - i - dec, 1);//2.x<j<y       i    x     j y//只管能短的,即:j-i > x-i + 1 + y-j//              2j > x+y+1//               j > (x+y+1)/2//j==(x+y+1)/2+1int j = (x + y + 1) / 2 + 1;//j到y-1add(j-i,y-i-1,-1);add(x - i + 2, x-i + 1 + y-j, 1);//3.j<=x不用管}else if (i < (x + y) / 2)// x - i - y 与 x - i - - y 都是不起作用,不需等于{                        //等于的话//y右:add(y-i,n-i,-1);int dec = y - i - (i - x + 1);add(y - i-dec, n - i-dec, 1);//y左://j-i>i-x+1+y-j//2j>2i-x+1+y//j>(2i-x+1+y)/2int j = i + (- x + 1+ y) / 2 + 1;add(j-i,y-1-i,-1);add(i - x +2, i - x + y - j + 1,1);}if (k > (orx + ory + 1) / 2){x = orx;y = ory;}}vector<ll>ret(n);ll sum_d = 0;for (int i = 0; i < n; i++){sum_d += ans[i+1];ret[i] = sum_d;}return ret;}
};

这篇关于leetcode第 381 场周赛最后一题 差分,对称的处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/635772

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

Java利用@SneakyThrows注解提升异常处理效率详解

《Java利用@SneakyThrows注解提升异常处理效率详解》这篇文章将深度剖析@SneakyThrows的原理,用法,适用场景以及隐藏的陷阱,看看它如何让Java异常处理效率飙升50%,感兴趣的... 目录前言一、检查型异常的“诅咒”:为什么Java开发者讨厌它1.1 检查型异常的痛点1.2 为什么说

Python利用PySpark和Kafka实现流处理引擎构建指南

《Python利用PySpark和Kafka实现流处理引擎构建指南》本文将深入解剖基于Python的实时处理黄金组合:Kafka(分布式消息队列)与PySpark(分布式计算引擎)的化学反应,并构建一... 目录引言:数据洪流时代的生存法则第一章 Kafka:数据世界的中央神经系统消息引擎核心设计哲学高吞吐