关于表达式中除数为0的容错机制的处理

2024-01-23 06:50

本文主要是介绍关于表达式中除数为0的容错机制的处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

说明:对于一个表达式(比如1+2/(A-B)),如果A-B为0,有时我们想这个表达式返回1,而不是0或者抛出异常。也就是局部的除数异常是允许的。这个时候就需要对公式做容错处理。

下面是用C#的处理过程,如有错误,欢迎指正

/// <summary>/// 公式容错/// 在执行公式时,会有除数为0的情况,此时不应该报错,只是包含除数为0的表达式计算结果为0,整个表达式继续执行/// 如1+(2/(4-8/(1+1)))  执行结果应该是1 而不应该报错/// 方法:/// 1:将原表达式转换为后缀表达式/// 2:再将后缀表达式转换为容错之后的中缀表达式/// 3:栈顶元素即为结果/// </summary>public class FormulasConvert {//存原始后缀表达式Stack<char> _suffixStack = new Stack<char>();/// <summary>/// 后缀表达式结果/// </summary>public string _suffixFormula = string.Empty;//存容错后中缀表达式Stack<string> _infixingStack = new Stack<string>();/// <summary>/// 容错后中缀表达式结果/// </summary>public string _infixingFormula = string.Empty;/// <summary>/// 原始公式/// </summary>private string _inputFormula = string.Empty;/// <summary>/// 用字符转换之后的原始公式/// 10+10==》A+B/// </summary>private string _newFormula = string.Empty;//操作符private string _operator = "+-*/()";/// <summary>/// 原公式:100+2/300/// 对应:/// A:100  B:2 C:300/// 最终/// A+B/C/// </summary>Dictionary<string, string> _dicCompary = new Dictionary<string, string>();public FormulasConvert(string inputFormula) {this._inputFormula = inputFormula;}/// <summary>/// 将原始表达式转换成后缀表达式/// </summary>/// <param name="inputString">原中缀表达式</param>/// <returns></returns>public string ConvertToSuffix() {OperatorFormula();for (int i = 0; i < _newFormula.Length; i++) {char ch = _newFormula[i];if (!IsOperator(ch)) {_suffixFormula += ch;} else if (ch == '(')_suffixStack.Push(ch);else if (ch == ')') {while (_suffixStack.Peek() != '(')_suffixFormula += _suffixStack.Pop();_suffixStack.Pop();} else if (ch == '+' || ch == '-' || ch == '*' || ch == '/') {if (_suffixStack.Count == 0)_suffixStack.Push(ch);else if (_suffixStack.Peek() == '(')_suffixStack.Push(ch);else if (CompareOperate(ch, _suffixStack.Peek()) == 1)_suffixStack.Push(ch);else if (CompareOperate(ch, _suffixStack.Peek()) == 0) {_suffixFormula += _suffixStack.Pop();_suffixStack.Push(ch);} else if (CompareOperate(ch, _suffixStack.Peek()) == -1) {int com = -1;while (com == -1 || com == 0) {_suffixFormula += _suffixStack.Pop();if (_suffixStack.Count != 0)com = CompareOperate(ch, _suffixStack.Peek());elsebreak;}_suffixStack.Push(ch);}}}string tmpStr = string.Empty;for (int i = 0; i < _suffixStack.Count + 1; i++) {if (_suffixStack.Count > 0) {tmpStr += _suffixStack.Peek().ToString();_suffixStack.Pop();}}_suffixFormula = _suffixFormula + tmpStr;return GetFormulaResult(_suffixFormula);}private int CompareOperate(char ch, char stackCh) {if (ch == stackCh)return 0;else if ((ch == '+' && stackCh == '-') || (ch == '-' && stackCh == '+'))//表示等于return 0;else if ((ch == '*' && stackCh == '/') || (ch == '/' && stackCh == '*'))return 0;else if ((ch == '+' || ch == '-') && (stackCh == '*' || stackCh == '/'))//表示小于return -1;else if ((ch == '*' || ch == '/') && (stackCh == '+' || stackCh == '-'))//返回1 表示输入运算符的优先级大于栈顶运算符return 1;elsereturn -2;}/// <summary>/// 将后缀表达式生成中缀表达式(未容错)/// </summary>/// <returns></returns>public string ConvertToInfixing() {if (string.IsNullOrEmpty(this._inputFormula))return string.Empty;ConvertToSuffix();if (string.IsNullOrEmpty(this._suffixFormula))return string.Empty;for (int i = 0; i < _suffixFormula.Length; i++) {char ch = _suffixFormula[i];if (!IsOperator(ch)) { //操作数入栈_infixingStack.Push(ch.ToString());} else if (ch == '+' || ch == '-' || ch == '*' || ch == '/') {string tmp1 = _infixingStack.Pop();string tmp2 = _infixingStack.Pop();string tmp = string.Empty;tmp = "(" + tmp2;tmp += ch;tmp += tmp1 + ")";_infixingStack.Push(tmp);}}return GetFormulaResult(_infixingStack.Peek());}/// <summary>/// 将后缀表达式生成中缀表达式(容错,替换除数为0)/// 返回容错之后的新中缀表达式/// </summary>/// <param name="inputString"></param>/// <returns></returns>public string Convert() {if (string.IsNullOrEmpty(this._inputFormula))return string.Empty;ConvertToSuffix();if (string.IsNullOrEmpty(this._suffixFormula))return string.Empty;for (int i = 0; i < _suffixFormula.Length; i++) {char ch = _suffixFormula[i];if (!IsOperator(ch)) { //操作数入栈_infixingStack.Push(ch.ToString());} else if (ch == '+' || ch == '-' || ch == '*') {string tmp1 = _infixingStack.Pop();string tmp2 = _infixingStack.Pop();string tmp = string.Empty;tmp = "(" + tmp2;tmp += ch;tmp += tmp1 + ")";_infixingStack.Push(tmp);} else if (ch == '/') {//(A if(Ture) else B)string tmp1 = _infixingStack.Pop();string tmp2 = _infixingStack.Pop();string tmp = string.Empty;tmp = "(0 if(" + tmp1 + "==0) else (" + tmp2 + "/" + tmp1 + "))";_infixingStack.Push(tmp);}}return GetFormulaResult(_infixingStack.Peek());}/// <summary>/// 处理原始表达式为原运算符/// 最终变成A+B/C这种模式/// </summary>private void OperatorFormula() {if (string.IsNullOrEmpty(this._inputFormula))return;//26个字母应该够用了,一个公式有26个运算项已经够多了char start = 'A';string tmpData = string.Empty;for (int i = 0; i < this._inputFormula.Length; i++) {char ch = _inputFormula[i];if (IsOperator(ch)) {if (!string.IsNullOrEmpty(tmpData.Trim())) {this._dicCompary.Add(start.ToString(), tmpData);_newFormula += start.ToString();start = (char)((int)start + 1);tmpData = string.Empty;} else {tmpData = string.Empty;  //空格不处理}_newFormula += ch.ToString();} else {tmpData += _inputFormula[i].ToString();}}if (!string.IsNullOrEmpty(tmpData.Trim())) {_dicCompary.Add(start.ToString(), tmpData);_newFormula += start.ToString();  //加上最后一个操作数}}/// <summary>/// 根据_newFormula与_dicCompary重新组织成公式/// </summary>/// <returns></returns>private string GetFormulaResult(string formulas) {if (string.IsNullOrEmpty(formulas))return string.Empty;string newFormulas = string.Empty;for (int i = 0; i < formulas.Length; i++) {string key = formulas[i].ToString();if (_dicCompary.ContainsKey(key)) {newFormulas += _dicCompary[key];} else {newFormulas += key;}}return newFormulas;}//判断是否是操作符,目前操作符为+-*/()private bool IsOperator(char c) {return _operator.Contains(c.ToString());}}
测试:

private void button2_Click(object sender, EventArgs e) {FormulasConvert convert = new FormulasConvert(this.label2.Text);richTextBox2.Text = convert.ConvertToSuffix();}private void button3_Click(object sender, EventArgs e) {FormulasConvert convert = new FormulasConvert(this.label2.Text);richTextBox3.Text = convert.Convert();}

图例:



这篇关于关于表达式中除数为0的容错机制的处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/635556

相关文章

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

一文详解Java异常处理你都了解哪些知识

《一文详解Java异常处理你都了解哪些知识》:本文主要介绍Java异常处理的相关资料,包括异常的分类、捕获和处理异常的语法、常见的异常类型以及自定义异常的实现,文中通过代码介绍的非常详细,需要的朋... 目录前言一、什么是异常二、异常的分类2.1 受检异常2.2 非受检异常三、异常处理的语法3.1 try-

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Java Response返回值的最佳处理方案

《JavaResponse返回值的最佳处理方案》在开发Web应用程序时,我们经常需要通过HTTP请求从服务器获取响应数据,这些数据可以是JSON、XML、甚至是文件,本篇文章将详细解析Java中处理... 目录摘要概述核心问题:关键技术点:源码解析示例 1:使用HttpURLConnection获取Resp

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Java中Switch Case多个条件处理方法举例

《Java中SwitchCase多个条件处理方法举例》Java中switch语句用于根据变量值执行不同代码块,适用于多个条件的处理,:本文主要介绍Java中SwitchCase多个条件处理的相... 目录前言基本语法处理多个条件示例1:合并相同代码的多个case示例2:通过字符串合并多个case进阶用法使用

Java中的Lambda表达式及其应用小结

《Java中的Lambda表达式及其应用小结》Java中的Lambda表达式是一项极具创新性的特性,它使得Java代码更加简洁和高效,尤其是在集合操作和并行处理方面,:本文主要介绍Java中的La... 目录前言1. 什么是Lambda表达式?2. Lambda表达式的基本语法例子1:最简单的Lambda表