本文主要是介绍论文中的一处推导,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
这里写自定义目录标题
x H diag { w w H } x x H w w H x \frac {\mathbf{x}^{H}\text{diag}\left\{\mathbf{w}\mathbf{w}^{H}\right\}\mathbf{x}}{\mathbf{x}^{H}\mathbf{w}\mathbf{w}^{H}\mathbf{x}} xHwwHxxHdiag{wwH}x
要将给定的表达式化简为形如 ∥ a ∥ 2 ∥ b ∥ 2 \frac{{\|\mathbf{a}\|^2}}{{\|\mathbf{b}\|^2}} ∥b∥2∥a∥2 的形式,我们可以考虑定义新的向量 a \mathbf{a} a 和 b \mathbf{b} b,使得原始的分子和分母分别变为 ∥ a ∥ 2 \|\mathbf{a}\|^2 ∥a∥2 和 ∥ b ∥ 2 \|\mathbf{b}\|^2 ∥b∥2。
给定的表达式是:
[
x H diag { w w H } x x H w w H x \frac {\mathbf{x}^{H}\text{diag}\left\{\mathbf{w}\mathbf{w}^{H}\right\}\mathbf{x}}{\mathbf{x}^{H}\mathbf{w}\mathbf{w}^{H}\mathbf{x}} xHwwHxxHdiag{wwH}x
]
首先,令 a = w H x \mathbf{a} = \mathbf{w}^{H}\mathbf{x} a=wHx,这样我们就有 ∥ a ∥ 2 = x H w w H x \|\mathbf{a}\|^2 = \mathbf{x}^{H}\mathbf{w}\mathbf{w}^{H}\mathbf{x} ∥a∥2=xHwwHx。
然后,令 b = w \mathbf{b} = \mathbf{w} b=w,这样我们就有 ∥ b ∥ 2 = w H w \|\mathbf{b}\|^2 = \mathbf{w}^{H}\mathbf{w} ∥b∥2=wHw。
现在,我们可以将原始的表达式用 a \mathbf{a} a 和 b \mathbf{b} b 重新表示:
[
x H diag { w w H } x x H w w H x = x H diag { b b H } x ∥ a ∥ 2 \frac {\mathbf{x}^{H}\text{diag}\left\{\mathbf{w}\mathbf{w}^{H}\right\}\mathbf{x}}{\mathbf{x}^{H}\mathbf{w}\mathbf{w}^{H}\mathbf{x}} = \frac {\mathbf{x}^{H}\text{diag}\left\{\mathbf{b}\mathbf{b}^{H}\right\}\mathbf{x}}{\|\mathbf{a}\|^2} xHwwHxxHdiag{wwH}x=∥a∥2xHdiag{bbH}x
]
最后,我们可以进一步简化为:
[
f ( w , Θ ) = x H diag { b b H } x ∥ a ∥ 2 = ∥ b ∥ 2 ∥ x ∥ 2 ∥ a ∥ 2 = ∥ w ∥ 2 ∥ x ∥ 2 ∥ w H x ∥ 2 , \mathbf{f}\left(\mathbf{w},\mathbf{\Theta}\right) = \frac {\mathbf{x}^{H}\text{diag}\left\{\mathbf{b}\mathbf{b}^{H}\right\}\mathbf{x}}{\|\mathbf{a}\|^2} = \frac {\|\mathbf{b}\|^2 \|\mathbf{x}\|^2}{\|\mathbf{a}\|^2} = \frac {\|\mathbf{w}\|^2 \|\mathbf{x}\|^2}{\|\mathbf{w}^{H}\mathbf{x}\|^2}, f(w,Θ)=∥a∥2xHdiag{bbH}x=∥a∥2∥b∥2∥x∥2=∥wHx∥2∥w∥2∥x∥2,
where
x = t 1 T t 1 R H Θ H s T s R H Θ H r 2 T \mathbf{x} = \mathbf{t}_{1T}\mathbf{t}_{1R}^{H}\mathbf{\Theta}^{H}\mathbf{s}_{T}\mathbf{s}_{R}^{H}\mathbf{\Theta}^{H}\mathbf{r}_{2T} x=t1Tt1RHΘHsTsRHΘHr2T
]
or
[
f ( w , Θ 1 , Θ 2 ) = x H diag { b b H } x ∥ a ∥ 2 = ∥ b ∥ 2 ∥ x ∥ 2 ∥ a ∥ 2 = ∥ w ∥ 2 ∥ x ∥ 2 ∥ w H x ∥ 2 , \mathbf{f}\left(\mathbf{w},\mathbf{\Theta}_1,\mathbf{\Theta}_2\right) = \frac {\mathbf{x}^{H}\text{diag}\left\{\mathbf{b}\mathbf{b}^{H}\right\}\mathbf{x}}{\|\mathbf{a}\|^2} = \frac {\|\mathbf{b}\|^2 \|\mathbf{x}\|^2}{\|\mathbf{a}\|^2} = \frac {\|\mathbf{w}\|^2 \|\mathbf{x}\|^2}{\|\mathbf{w}^{H}\mathbf{x}\|^2}, f(w,Θ1,Θ2)=∥a∥2xHdiag{bbH}x=∥a∥2∥b∥2∥x∥2=∥wHx∥2∥w∥2∥x∥2,
where
x = t 1 T t 1 R H Θ 1 H s T s R H Θ 2 H r 2 T = h \mathbf{x} = \mathbf{t}_{1T}\mathbf{t}_{1R}^{H}\mathbf{\Theta}_{1}^{H}\mathbf{s}_{T}\mathbf{s}_{R}^{H}\mathbf{\Theta}_{2}^{H}\mathbf{r}_{2T} = \mathbf{h} x=t1Tt1RHΘ1HsTsRHΘ2Hr2T=h
]
(P7) min w , Θ 1 , Θ 2 ∥ w ∥ 2 ∥ t 1 T t 1 R H Θ 1 H s T s R H Θ 2 H r 2 T ∥ 2 ∥ w H t 1 T t 1 R H Θ 1 H s T s R H Θ 2 H r 2 T ∥ 2 s.t. ( 1 + β T ) tr ( w w H ) ≤ P t , Θ 1 = diag { θ 11 , ⋯ , θ 1 L } , ∣ θ 1 i ∣ = 1 , i ∈ { 1 , ⋯ , L } , Θ 2 = diag { θ 21 , ⋯ , θ 2 L } , ∣ θ 2 i ∣ = 1 , i ∈ { 1 , ⋯ , L } . \begin{align} \text { (P7) } \quad \min _{\mathbf{w}, \boldsymbol{\Theta}_1, \boldsymbol{\Theta}_2} & \frac {\|\mathbf{w}\|^2 \|\mathbf{t}_{1T}\mathbf{t}_{1R}^{\mathrm{H}}\boldsymbol{\Theta}_{1}^{\mathrm{H}}\mathbf{s}_{T}\mathbf{s}_{R}^{\mathrm{H}}\boldsymbol{\Theta}_{2}^{\mathrm{H}}\mathbf{r}_{2T}\|^2}{\|\mathbf{w}^{\mathrm{H}}\mathbf{t}_{1T}\mathbf{t}_{1R}^{\mathrm{H}}\boldsymbol{\Theta}_{1}^{\mathrm{H}}\mathbf{s}_{T}\mathbf{s}_{R}^{\mathrm{H}}\boldsymbol{\Theta}_{2}^{\mathrm{H}}\mathbf{r}_{2T}\|^2} \\ \text { s.t. } &\left( 1 + \beta_T \right) \operatorname{tr}\left(\mathbf{w w}^{\mathrm{H}}\right) \leq P_t \text {, } \\ & \boldsymbol{\Theta}_1=\operatorname{diag}\left\{\theta_{11}, \cdots, \theta_{1L}\right\}, \\ & \left|\theta_{1i}\right|=1, \quad i \in\{1, \cdots, L\} , \\ & \boldsymbol{\Theta}_2=\operatorname{diag}\left\{\theta_{21}, \cdots, \theta_{2L}\right\}, \\ & \left|\theta_{2i}\right|=1, \quad i \in\{1, \cdots, L\} . \\ \end{align} (P7) w,Θ1,Θ2min s.t. ∥wHt1Tt1RHΘ1HsTsRHΘ2Hr2T∥2∥w∥2∥t1Tt1RHΘ1HsTsRHΘ2Hr2T∥2(1+βT)tr(wwH)≤Pt, Θ1=diag{θ11,⋯,θ1L},∣θ1i∣=1,i∈{1,⋯,L},Θ2=diag{θ21,⋯,θ2L},∣θ2i∣=1,i∈{1,⋯,L}.
(P7) min w , Θ ∥ w ∥ 2 ∥ t 1 T t 1 R H Θ H s T s R H Θ H r 2 T ∥ 2 ∥ w H t 1 T t 1 R H Θ H s T s R H Θ H r 2 T ∥ 2 s.t. ( 1 + β T ) tr ( w w H ) ≤ P t , Θ = diag { θ 1 , ⋯ , θ L } , ∣ θ i ∣ = 1 , i ∈ { 1 , ⋯ , L } . \begin{align} \text { (P7) } \quad \min _{\mathbf{w}, \boldsymbol{\Theta}} & \frac {\|\mathbf{w}\|^2 \|\mathbf{t}_{1T}\mathbf{t}_{1R}^{\mathrm{H}}\boldsymbol{\Theta}^{\mathrm{H}}\mathbf{s}_{T}\mathbf{s}_{R}^{\mathrm{H}}\boldsymbol{\Theta}^{\mathrm{H}}\mathbf{r}_{2T}\|^2}{\|\mathbf{w}^{\mathrm{H}}\mathbf{t}_{1T}\mathbf{t}_{1R}^{\mathrm{H}}\boldsymbol{\Theta}^{\mathrm{H}}\mathbf{s}_{T}\mathbf{s}_{R}^{\mathrm{H}}\boldsymbol{\Theta}^{\mathrm{H}}\mathbf{r}_{2T}\|^2} \\ \text { s.t. } &\left( 1 + \beta_T \right) \operatorname{tr}\left(\mathbf{w w}^{\mathrm{H}}\right) \leq P_t \text {, } \\ & \boldsymbol{\Theta}=\operatorname{diag}\left\{\theta_{1}, \cdots, \theta_{L}\right\}, \\ & \left|\theta_{i}\right|=1, \quad i \in\{1, \cdots, L\} . \\ \end{align} (P7) w,Θmin s.t. ∥wHt1Tt1RHΘHsTsRHΘHr2T∥2∥w∥2∥t1Tt1RHΘHsTsRHΘHr2T∥2(1+βT)tr(wwH)≤Pt, Θ=diag{θ1,⋯,θL},∣θi∣=1,i∈{1,⋯,L}.
其实这里的norm应该改成abs
w o p t = P t 1 + β T t 1 T t 1 R H Θ H s T s R H Θ H r 2 T ∥ t 1 T t 1 R H Θ H s T s R H Θ H r 2 T ∥ \mathbf{w}_{opt} = \sqrt{\frac{P_t}{1+\beta_T}} \frac{\mathbf{t}_{1T}\mathbf{t}_{1R}^{\mathrm{H}}\boldsymbol{\Theta}^{\mathrm{H}}\mathbf{s}_{T}\mathbf{s}_{R}^{\mathrm{H}}\boldsymbol{\Theta}^{\mathrm{H}}\mathbf{r}_{2T}} {\|\mathbf{t}_{1T}\mathbf{t}_{1R}^{\mathrm{H}}\boldsymbol{\Theta}^{\mathrm{H}}\mathbf{s}_{T}\mathbf{s}_{R}^{\mathrm{H}}\boldsymbol{\Theta}^{\mathrm{H}}\mathbf{r}_{2T}\|} wopt=1+βTPt∥t1Tt1RHΘHsTsRHΘHr2T∥t1Tt1RHΘHsTsRHΘHr2T
这篇关于论文中的一处推导的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!