【动态规划】【广度优先搜索】【状态压缩】847 访问所有节点的最短路径

本文主要是介绍【动态规划】【广度优先搜索】【状态压缩】847 访问所有节点的最短路径,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者推荐

视频算法专题

本文涉及知识点

动态规划汇总
广度优先搜索 状态压缩

LeetCode847 访问所有节点的最短路径

存在一个由 n 个节点组成的无向连通图,图中的节点按从 0 到 n - 1 编号。
给你一个数组 graph 表示这个图。其中,graph[i] 是一个列表,由所有与节点 i 直接相连的节点组成。
返回能够访问所有节点的最短路径的长度。你可以在任一节点开始和停止,也可以多次重访节点,并且可以重用边。
示例 1:
输入:graph = [[1,2,3],[0],[0],[0]]
输出:4
解释:一种可能的路径为 [1,0,2,0,3]
示例 2:
输入:graph = [[1],[0,2,4],[1,3,4],[2],[1,2]]
输出:4
解释:一种可能的路径为 [0,1,4,2,3]
参数范围
n == graph.length
1 <= n <= 12
0 <= graph[i].length < n
graph[i] 不包含 i
如果 graph[a] 包含 b ,那么 graph[b] 也包含 a
输入的图总是连通图

广度优先搜索

需要记录那些节点已经访问,用状态压缩 (1 << i )表示第i个节点已访问。
还要记录此路径的最后节点。
这两个状态相同,后面的路径则相同。 由于是广度优先搜索,所以路径短的先处理,每个状态只会处理一次。
vDis 记录各状态的最短路径数。
que 记录状态。
时间复杂度:O(n2nn) 枚举起点O(n) 枚举状态数O(2^n) 每个状态处理。

核心代码

class Solution {
public:int shortestPathLength(vector<vector<int>>& graph) {m_c = graph.size();m_iMaskCount = 1 << m_c;for (int i = 0; i < m_c; i++){BFS(graph, i);}return m_iRet;}void BFS(vector<vector<int>>& neiBo,int start){vector<vector<int>> vDis(m_c, vector<int>(m_iMaskCount, m_iNotMay));queue<pair<int, int>> que;auto Add = [&](int node, int iPreMask,int iNew){const int iMask = iPreMask | (1 << node);if (vDis[node][iMask] <= iNew ){return ;}vDis[node][iMask] = iNew;que.emplace(node, iMask);};Add( start,0, 0);while (que.size()){auto [preNode, preMask] = que.front();const int iNew = vDis[preNode][preMask]+1;que.pop();for (const auto& next : neiBo[preNode]){Add(next, preMask, iNew);}}for (const auto& v : vDis){m_iRet = min(m_iRet, v.back());}}const int m_iNotMay = 100'000;int m_c, m_iMaskCount;int m_iRet = m_iNotMay;
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{	vector<vector<int>> graph;{Solution sln;graph = { {1,2,3},{0},{0},{0} };auto res = sln.shortestPathLength(graph);Assert(res, 4);}{Solution sln;graph = { {1},{0,2,4},{1,3,4},{2},{1,2} };auto res = sln.shortestPathLength(graph);Assert(res, 4);}}

动态规划

节点的距离用多源路径的最短距离。

动态规划的状态表示

mask&(1 << next)表示经过了next节点。
vDis[node][mask] 有以下两种含义:
一, 以node结尾,经过mask指定节点的最短路径经过的节点数。
二,以node结尾,且只经过node节点一次,经过mask指定节点的最短路径经过的节点数。
含义二,如果存在,则是含义二,否则是含义一。 必须枚举所有符合含义二的可能。

动态规划的转移方程

vDis[next][maks|next]= MinSelf n e x t = 0 m c − 1 \Large_{next=0}^{m_c-1} next=0mc1vDis[i][mask]+距离(i,next)
vDis[i][mask] 必须合法,且mask不包括next节点

动态规划的填表顺序

mask从1到大,确保动态规划的无后效性。某路径的编码是mask,经过新节点next后,新编码为iNewMask。则iNewMask-mask = 1 << next
1 << next 恒大于0。

动态规划的初始值

全部为不存在的数

动态规划的返回值

Min j = 0 m c − 1 \Large_{j=0}^{m_c-1} j=0mc1vDis[j].back() -1

证明

将最短路径的重复节点删除,保留任意一个。删除后为: i 1 \Large_1 1 i 2 \Large_2 2 …i n \Large_n n 。任意i k \Large_k k到i k + 1 \Large_{k+1} k+1的路径一定是最短,否则替换成最短。直接枚举,12! 超时。 用动态规划,共2nn种状态,空间复杂度O(2nn),每种状态转移时间复杂度O(n),故总时间复杂度O(2nnn)。

代码

//多源码路径
template<class T, T INF = 1000 * 1000 * 1000>
class CFloyd
{
public:CFloyd(const  vector<vector<T>>& mat){m_vMat = mat;const int n = mat.size();for (int i = 0; i < n; i++){//通过i中转for (int i1 = 0; i1 < n; i1++){for (int i2 = 0; i2 < n; i2++){//此时:m_vMat[i1][i2] 表示通过[0,i)中转的最短距离m_vMat[i1][i2] = min(m_vMat[i1][i2], m_vMat[i1][i] + m_vMat[i][i2]);//m_vMat[i1][i2] 表示通过[0,i]中转的最短距离}}}};vector<vector<T>> m_vMat;
};class Solution {
public:int shortestPathLength(vector<vector<int>>& graph) {m_c = graph.size();m_iMaskCount = 1 << m_c;vector<vector<int>> mat(m_c, vector<int>(m_c, 1000 * 1000 * 1000));for (int i = 0; i < m_c; i++){for (const auto& j : graph[i]){mat[i][j] = 1;}}CFloyd floyd(mat);vector<vector<int>> vDis(m_c, vector<int>(m_iMaskCount, m_iNotMay));for (int i = 0; i < m_c; i++){	vDis[i][1 << i] = 1;}for (int mask = 1; mask < m_iMaskCount; mask++){for (int i = 0; i < m_c; i++){if (vDis[i][mask] >= m_iNotMay){continue;}for (int next = 0 ;next < m_c ;next++ ){if ((1 << next) & mask){continue;//已经访问}const int iNewMask = (1 << next) | mask;vDis[next][iNewMask] = min(vDis[next][iNewMask], vDis[i][mask] + floyd.m_vMat[i][next]);}}}int iRet = m_iNotMay;for (const auto& v : vDis){iRet = min(iRet, v.back());}return iRet-1;}const int m_iNotMay = 100'000;int m_c, m_iMaskCount;};

2023年1月

class Solution {
public:
int shortestPathLength(vector<vector>& graph) {
auto Add = [this](int iMask, int iPos, int iOpeNum)
{
if (INT_MAX != m_vMaskPosMinOpe[iMask][iPos])
{
return;
}
m_vQue.emplace_back(iMask, iPos);
m_vMaskPosMinOpe[iMask][iPos] = iOpeNum;
};
m_c = graph.size();
for (int i = 0; i < sizeof(m_vMaskPosMinOpe) / sizeof(m_vMaskPosMinOpe[0]); i++)
{
for (int j = 0; j < sizeof(m_vMaskPosMinOpe[0]) / sizeof(m_vMaskPosMinOpe[0][0]); j++)
{
m_vMaskPosMinOpe[i][j] = INT_MAX;
}
}
for (int i = 0; i < m_c; i++)
{
Add(1 << i, i, 0);
}
for (int i = 0; i < m_vQue.size(); i++)
{
const int iMask = m_vQue[i].first;
const int iPos = m_vQue[i].second;
for (auto& next : graph[iPos])
{
int iNewMask = iMask | (1 << next);
Add(iNewMask, next, m_vMaskPosMinOpe[iMask][iPos] + 1);
}
}
int iMin = INT_MAX;
for (int i = 0; i < sizeof(m_vMaskPosMinOpe[0]) / sizeof(m_vMaskPosMinOpe[0][0]); i++)
{
iMin = min(iMin, m_vMaskPosMinOpe[(1 << m_c) - 1][i]);
}
return iMin;
}
vector<std::pair<int,int>> m_vQue;
int m_vMaskPosMinOpe[1 << 12 ][12];
int m_c;
};

2023年8月

class Solution {
public:
int shortestPathLength(vector<vector>& graph) {
auto Add = [this](int iMask, int iPos, int iOpeNum)
{
if (INT_MAX != m_vMaskPosMinOpe[iMask][iPos])
{
return;
}
m_vQue.emplace_back(iMask, iPos);
m_vMaskPosMinOpe[iMask][iPos] = iOpeNum;
};
m_c = graph.size();
for (int i = 0; i < sizeof(m_vMaskPosMinOpe) / sizeof(m_vMaskPosMinOpe[0]); i++)
{
for (int j = 0; j < sizeof(m_vMaskPosMinOpe[0]) / sizeof(m_vMaskPosMinOpe[0][0]); j++)
{
m_vMaskPosMinOpe[i][j] = INT_MAX;
}
}
for (int i = 0; i < m_c; i++)
{
Add(1 << i, i, 0);
}
for (int i = 0; i < m_vQue.size(); i++)
{
const int iMask = m_vQue[i].first;
const int iPos = m_vQue[i].second;
for (auto& next : graph[iPos])
{
int iNewMask = iMask | (1 << next);
Add(iNewMask, next, m_vMaskPosMinOpe[iMask][iPos] + 1);
}
}
int iMin = INT_MAX;
for (int i = 0; i < sizeof(m_vMaskPosMinOpe[0]) / sizeof(m_vMaskPosMinOpe[0][0]); i++)
{
iMin = min(iMin, m_vMaskPosMinOpe[(1 << m_c) - 1][i]);
}
return iMin;
}
vector<std::pair<int,int>> m_vQue;
int m_vMaskPosMinOpe[1 << 12 ][12];
int m_c;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【动态规划】【广度优先搜索】【状态压缩】847 访问所有节点的最短路径的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/632898

相关文章

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

JWT + 拦截器实现无状态登录系统

《JWT+拦截器实现无状态登录系统》JWT(JSONWebToken)提供了一种无状态的解决方案:用户登录后,服务器返回一个Token,后续请求携带该Token即可完成身份验证,无需服务器存储会话... 目录✅ 引言 一、JWT 是什么? 二、技术选型 三、项目结构 四、核心代码实现4.1 添加依赖(pom

SpringBoot路径映射配置的实现步骤

《SpringBoot路径映射配置的实现步骤》本文介绍了如何在SpringBoot项目中配置路径映射,使得除static目录外的资源可被访问,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一... 目录SpringBoot路径映射补:springboot 配置虚拟路径映射 @RequestMapp

浅谈MySQL的容量规划

《浅谈MySQL的容量规划》进行MySQL的容量规划是确保数据库能够在当前和未来的负载下顺利运行的重要步骤,容量规划包括评估当前资源使用情况、预测未来增长、调整配置和硬件资源等,感兴趣的可以了解一下... 目录一、评估当前资源使用情况1.1 磁盘空间使用1.2 内存使用1.3 CPU使用1.4 网络带宽二、

通过配置nginx访问服务器静态资源的过程

《通过配置nginx访问服务器静态资源的过程》文章介绍了图片存储路径设置、Nginx服务器配置及通过http://192.168.206.170:8007/a.png访问图片的方法,涵盖图片管理与服务... 目录1.图片存储路径2.nginx配置3.访问图片方式总结1.图片存储路径2.nginx配置

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499