团灭 LeetCode 股票买卖问题

2024-01-21 23:52

本文主要是介绍团灭 LeetCode 股票买卖问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这几道题目是有共性的,我们只需要抽出来力扣第 188 题「188. 买卖股票的最佳时机 IV - 力扣(LeetCode)」进行研究,因为这道题是最泛化的形式,其他的问题都是这个形式的简化,看下题目:

在这里插入图片描述
第一题是只进行一次交易,相当于 k = 1;第二题是不限交易次数,相当于 k = +infinity(正无穷);第三题是只进行 2 次交易,相当于 k = 2;剩下两道也是不限次数,但是加了交易「冷冻期」和「手续费」的额外条件,其实就是第二题的变种,都很容易处理。

下面言归正传,开始解题。

穷举框架

首先,还是一样的思路:如何穷举?

动态规划算法本质上就是穷举「状态」,然后在「选择」中选择最优解。

那么对于这道题,我们具体到每一天,看看总共有几种可能的「状态」,再找出每个「状态」对应的「选择」。我们要穷举所有「状态」,穷举的目的是根据对应的「选择」更新状态。听起来抽象,你只要记住「状态」和「选择」两个词就行,下面实操一下就很容易明白了。

for 状态1 in 状态1的所有取值:for 状态2 in 状态2的所有取值:for ...dp[状态1][状态2][...] = 择优(选择1,选择2...)

比如说这个问题,每天都有三种「选择」:买入、卖出、无操作,我们用 buy, sell, rest 表示这三种选择。

但问题是,并不是每天都可以任意选择这三种选择的,因为 sell 必须在 buy 之后,buy 必须在 sell 之后。那么 rest 操作还应该分两种状态,一种是 buy 之后的 rest(持有了股票),一种是 sell 之后的 rest(没有持有股票)。而且别忘了,我们还有交易次数 k 的限制,就是说你 buy 还只能在 k > 0 的前提下操作。

注:

注意我在本文会频繁使用「交易」这个词,我们把一次买入和一次卖出定义为一次「交易」

这个问题的「状态」有三个,第一个是天数,第二个是允许交易的最大次数,第三个是当前的持有状态(即之前说的 rest 的状态,我们不妨用 1 表示持有,0 表示没有持有)。然后我们用一个三维数组就可以装下这几种状态的全部组合:

dp[i][k][0 or 1]
0 <= i <= n - 1, 1 <= k <= K
n 为天数,大 K 为交易数的上限,0 和 1 代表是否持有股票。
此问题共 n × K × 2 种状态,全部穷举就能搞定。for 0 <= i < n:for 1 <= k <= K:for s in {0, 1}:dp[i][k][s] = max(buy, sell, rest)

而且我们可以用自然语言描述出每一个状态的含义,比如说 dp[3][2][1] 的含义就是:今天是第三天,我现在手上持有着股票,至今最多进行 2 次交易。再比如 dp[2][3][0] 的含义:今天是第二天,我现在手上没有持有股票,至今最多进行 3 次交易。很容易理解,对吧?

我们想求的最终答案是 dp[n - 1][K][0],即最后一天,最多允许 K 次交易,最多获得多少利润。

你可能问为什么不是 dp[n - 1][K][1]?因为 dp[n - 1][K][1] 代表到最后一天手上还持有股票,dp[n - 1][K][0] 表示最后一天手上的股票已经卖出去了,很显然后者得到的利润一定大于前者。

记住如何解释「状态」,一旦你觉得哪里不好理解,把它翻译成自然语言就容易理解了。

状态转移框架

现在,我们完成了「状态」的穷举,我们开始思考每种「状态」有哪些「选择」,应该如何更新「状态」。

只看「持有状态」,可以画个状态转移图:

在这里插入图片描述
通过这个图可以很清楚地看到,每种状态(0 和 1)是如何转移而来的。根据这个图,我们来写一下状态转移方程:

dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])max( 今天选择 rest,        今天选择 sell       )

解释:今天我没有持有股票,有两种可能,我从这两种可能中求最大利润:

1、我昨天就没有持有,且截至昨天最大交易次数限制为 k;然后我今天选择 rest,所以我今天还是没有持有,最大交易次数限制依然为 k

2、我昨天持有股票,且截至昨天最大交易次数限制为 k;但是今天我 sell 了,所以我今天没有持有股票了,最大交易次数限制依然为 k

dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])max( 今天选择 rest,         今天选择 buy         )

解释:今天我持有着股票,最大交易次数限制为 k,那么对于昨天来说,有两种可能,我从这两种可能中求最大利润:

1、我昨天就持有着股票,且截至昨天最大交易次数限制为 k;然后今天选择 rest,所以我今天还持有着股票,最大交易次数限制依然为 k

2、我昨天本没有持有,且截至昨天最大交易次数限制为 k - 1;但今天我选择 buy,所以今天我就持有股票了,最大交易次数限制为 k

这里着重提醒一下,时刻牢记「状态」的定义,状态 k 的定义并不是「已进行的交易次数」,而是「最大交易次数的上限限制」。如果确定今天进行一次交易,且要保证截至今天最大交易次数上限为 k,那么昨天的最大交易次数上限必须是 k - 1。举个具体的例子,比方说要求你的银行卡里今天至少有 100 块钱,且你确定你今天可以赚 10 块钱,那么你就要保证昨天的银行卡要至少剩下 90 块钱。

这个解释应该很清楚了,如果 buy,就要从利润中减去 prices[i],如果 sell,就要给利润增加 prices[i]。今天的最大利润就是这两种可能选择中较大的那个。

注意 k 的限制,在选择 buy 的时候相当于开启了一次交易,那么对于昨天来说,交易次数的上限 k 应该减小 1。

现在,我们已经完成了动态规划中最困难的一步:状态转移方程。如果之前的内容你都可以理解,那么你已经可以秒杀所有问题了,只要套这个框架就行了。不过还差最后一点点,就是定义 base case,即最简单的情况。

dp[-1][...][0] = 0
解释:因为 i 是从 0 开始的,所以 i = -1 意味着还没有开始,这时候的利润当然是 0。dp[-1][...][1] = -infinity
解释:还没开始的时候,是不可能持有股票的。
因为我们的算法要求一个最大值,所以初始值设为一个最小值,方便取最大值。dp[...][0][0] = 0
解释:因为 k 是从 1 开始的,所以 k = 0 意味着根本不允许交易,这时候利润当然是 0。dp[...][0][1] = -infinity
解释:不允许交易的情况下,是不可能持有股票的。
因为我们的算法要求一个最大值,所以初始值设为一个最小值,方便取最大值。

把上面的状态转移方程总结一下:

base case:
dp[-1][...][0] = dp[...][0][0] = 0
dp[-1][...][1] = dp[...][0][1] = -infinity状态转移方程:
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])

秒杀题目

121. 买卖股票的最佳时机

第一题,先说力扣第 121 题「121. 买卖股票的最佳时机 - 力扣(LeetCode)」,相当于 k = 1 的情况

在这里插入图片描述
直接套状态转移方程,根据 base case,可以做一些化简:

dp[i][1][0] = max(dp[i-1][1][0], dp[i-1][1][1] + prices[i])
dp[i][1][1] = max(dp[i-1][1][1], dp[i-1][0][0] - prices[i]) = max(dp[i-1][1][1], -prices[i])
解释:k = 0 的 base case,所以 dp[i-1][0][0] = 0。现在发现 k 都是 1,不会改变,即 k 对状态转移已经没有影响了。
可以进行进一步化简去掉所有 k:
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], -prices[i])
int n = prices.length;
int[][] dp = new int[n][2];
for (int i = 0; i < n; i++) {dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);dp[i][1] = Math.max(dp[i-1][1], -prices[i]);
}
return dp[n - 1][0];

显然 i = 0i - 1 是不合法的索引,这是因为我们没有对 i 的 base case 进行处理,可以这样给一个特化处理:

if (i - 1 == -1) {dp[i][0] = 0;// 根据状态转移方程可得://   dp[i][0] // = max(dp[-1][0], dp[-1][1] + prices[i])// = max(0, -infinity + prices[i]) = 0dp[i][1] = -prices[i];// 根据状态转移方程可得://   dp[i][1] // = max(dp[-1][1], dp[-1][0] - prices[i])// = max(-infinity, 0 - prices[i]) // = -prices[i]continue;
}

第一题就解决了,但是这样处理 base case 很麻烦,而且注意一下状态转移方程,新状态只和相邻的一个状态有关,不需要用整个 dp 数组,只需要一个变量储存相邻的那个状态就足够了,这样可以把空间复杂度降到 O(1):

// 原始版本
int maxProfit_k_1(int[] prices) {int n = prices.length;int[][] dp = new int[n][2];for (int i = 0; i < n; i++) {if (i - 1 == -1) {// base casedp[i][0] = 0;dp[i][1] = -prices[i];continue;}dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);dp[i][1] = Math.max(dp[i-1][1], -prices[i]);}return dp[n - 1][0];
}// 空间复杂度优化版本
int maxProfit_k_1(int[] prices) {int n = prices.length;// base case: dp[-1][0] = 0, dp[-1][1] = -infinityint dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;for (int i = 0; i < n; i++) {// dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);// dp[i][1] = max(dp[i-1][1], -prices[i])dp_i_1 = Math.max(dp_i_1, -prices[i]);}return dp_i_0;
}

122. 买卖股票的最佳时机 II

第二题,看一下力扣第 122 题「122. 买卖股票的最佳时机 II - 力扣(LeetCode)」,也就是 k 为正无穷的情况

在这里插入图片描述
题目还专门强调可以在同一天出售,但我觉得这个条件纯属多余,如果当天买当天卖,那利润当然就是 0,这不是和没有进行交易是一样的吗?这道题的特点在于没有给出交易总数 k 的限制,也就相当于 k 为正无穷。

如果 k 为正无穷,那么就可以认为 kk - 1 是一样的。可以这样改写框架:

dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])= max(dp[i-1][k][1], dp[i-1][k][0] - prices[i])我们发现数组中的 k 已经不会改变了,也就是说不需要记录 k 这个状态了:
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i])
// 原始版本
int maxProfit_k_inf(int[] prices) {int n = prices.length;int[][] dp = new int[n][2];for (int i = 0; i < n; i++) {if (i - 1 == -1) {// base casedp[i][0] = 0;dp[i][1] = -prices[i];continue;}dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0] - prices[i]);}return dp[n - 1][0];
}// 空间复杂度优化版本
int maxProfit_k_inf(int[] prices) {int n = prices.length;int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;for (int i = 0; i < n; i++) {int temp = dp_i_0;dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);dp_i_1 = Math.max(dp_i_1, temp - prices[i]);}return dp_i_0;
}

123. 买卖股票的最佳时机 III

第三题,看力扣第 123 题「123. 买卖股票的最佳时机 III - 力扣(LeetCode)」,也就是 k = 2 的情况
在这里插入图片描述
k = 2 和前面题目的情况稍微不同,因为上面的情况都和 k 的关系不太大:要么 k 是正无穷,状态转移和 k 没关系了;要么 k = 1,跟 k = 0 这个 base case 挨得近,最后也没有存在感。

这道题 k = 2 和后面要讲的 k 是任意正整数的情况中,对 k 的处理就凸显出来了,我们直接写代码,边写边分析原因。

原始的状态转移方程,没有可化简的地方
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])

按照之前的代码,我们可能想当然这样写代码(错误的):

int k = 2;
int[][][] dp = new int[n][k + 1][2];
for (int i = 0; i < n; i++) {if (i - 1 == -1) {// 处理 base casedp[i][k][0] = 0;dp[i][k][1] = -prices[i];continue;}dp[i][k][0] = Math.max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]);dp[i][k][1] = Math.max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i]);
}
return dp[n - 1][k][0];

为什么错误?我这不是照着状态转移方程写的吗?

还记得前面总结的「穷举框架」吗?就是说我们必须穷举所有状态。其实我们之前的解法,都在穷举所有状态,只是之前的题目中 k 都被化简掉了。

比如说第一题,k = 1 时的代码框架:

int n = prices.length;
int[][] dp = new int[n][2];
for (int i = 0; i < n; i++) {dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);dp[i][1] = Math.max(dp[i-1][1], -prices[i]);
}
return dp[n - 1][0];

但当 k = 2 时,由于没有消掉 k 的影响,所以必须要对 k 进行穷举:

// 原始版本
int maxProfit_k_2(int[] prices) {int max_k = 2, n = prices.length;int[][][] dp = new int[n][max_k + 1][2];for (int i = 0; i < n; i++) {for (int k = max_k; k >= 1; k--) {if (i - 1 == -1) {// 处理 base casedp[i][k][0] = 0;dp[i][k][1] = -prices[i];continue;}dp[i][k][0] = Math.max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]);dp[i][k][1] = Math.max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i]);}}// 穷举了 n × max_k × 2 个状态,正确。return dp[n - 1][max_k][0];
}

这里肯定会有读者疑惑,k 的 base case 是 0,按理说应该从 k = 1, k++ 这样穷举状态 k 才对?而且如果你真的这样从小到大遍历 k,提交发现也是可以的

为什么我从大到小遍历 k 也可以正确提交呢?因为你注意看,dp[i][k][..] 不会依赖 dp[i][k - 1][..],而是依赖 dp[i - 1][k - 1][..],而 dp[i - 1][..][..],都是已经计算出来的,所以不管你是 k = max_k, k--,还是 k = 1, k++,都是可以得出正确答案的。

那为什么我使用 k = max_k, k-- 的方式呢?因为这样符合语义:

你买股票,初始的「状态」是什么?应该是从第 0 天开始,而且还没有进行过买卖,所以最大交易次数限制 k 应该是 max_k;而随着「状态」的推移,你会进行交易,那么交易次数上限 k 应该不断减少,这样一想,k = max_k, k-- 的方式是比较合乎实际场景的。

当然,这里 k 取值范围比较小,所以也可以不用 for 循环,直接把 k = 1 和 2 的情况全部列举出来也可以:

// 状态转移方程:
// dp[i][2][0] = max(dp[i-1][2][0], dp[i-1][2][1] + prices[i])
// dp[i][2][1] = max(dp[i-1][2][1], dp[i-1][1][0] - prices[i])
// dp[i][1][0] = max(dp[i-1][1][0], dp[i-1][1][1] + prices[i])
// dp[i][1][1] = max(dp[i-1][1][1], -prices[i])// 空间复杂度优化版本
int maxProfit_k_2(int[] prices) {// base caseint dp_i10 = 0, dp_i11 = Integer.MIN_VALUE;int dp_i20 = 0, dp_i21 = Integer.MIN_VALUE;for (int price : prices) {dp_i20 = Math.max(dp_i20, dp_i21 + price);dp_i21 = Math.max(dp_i21, dp_i10 - price);dp_i10 = Math.max(dp_i10, dp_i11 + price);dp_i11 = Math.max(dp_i11, -price);}return dp_i20;
}

这篇关于团灭 LeetCode 股票买卖问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/631226

相关文章

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2

解决JSONField、JsonProperty不生效的问题

《解决JSONField、JsonProperty不生效的问题》:本文主要介绍解决JSONField、JsonProperty不生效的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录jsONField、JsonProperty不生效javascript问题排查总结JSONField

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co

如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socket read timed out的问题

《如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socketreadtimedout的问题》:本文主要介绍解决Druid线程... 目录异常信息触发场景找到版本发布更新的说明从版本更新信息可以看到该默认逻辑已经去除总结异常信息触发场景复