深度学习——苹果新鲜度识别

2024-01-21 13:40

本文主要是介绍深度学习——苹果新鲜度识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本项目使用yolov8模型作为目标检测的模型

目录

项目背景:

一、项目需求:

二、项目实现:

(一)流程介绍:

1、YOLOv8环境配置:

(二)、训练数据集的准备工作

1、准备好数据集:

2、划分数据集

3、训练模型

4、预测模型

三、检测结果与思考:

1、训练阶段:

2、训练结束:

训练过程视频:

四、知识体系:  

(一)、网络定义:

(二)、输出定义:

(三)、Loss函数定义:

五、模型结构设计

六、模型推理过程

七、小总结:

项目背景:

        近年来,随着全球经济的发展,水果消费市场规模不断扩大,水果种类也日益丰富。水果检测与识别技术在农业生产、仓储物流、超市零售等领域具有重要的应用价值。传统的水果检测与识别方法主要依赖于人工识别,这种方法在一定程度上受到人力成本、识别效率和准确性等方面的限制。因此,开发一种高效、准确的自动化水果检测与识别系统具有重要的研究意义和实际价值。

        在本博文中,我们提出了一种基于深度学习的苹果新鲜度检测与识别系统,该系统采用YOLOv8算法对苹果进行检测和识别,实现对图片中的苹果进行准确识别。

一、项目需求:

对苹果外形进行检测与识别,系统将识别出图片中苹果的新鲜程度并显示相应的类别。

二、项目实现:

通过调研,本项目最终使用yolov8模型作为目标检测的模型, YOLOv8 旨在快速、准确且易于使用,使其成为广泛的物体检测、图像分割和图像分类任务的极佳选择。

(一)流程介绍:
1、YOLOv8环境配置:

首先去自己的anaconda的安装的envs(虚拟环境),在导航栏输入cmd,进入命令窗口。

确保python>=3.7;CUDA>=10.1,PYtorch>=1.7

(1)、创建一个虚拟环境

conda create -n torch1.12.1 python=3.8.8

(2)、激活刚建的虚拟环境

activate torch1.12.1 

(3)、到官方网站下载yolo模型 ,下载好后解压,里面有个文件requirements.txt 

 https://github.com/ultralytics/ultralytics

安装一个整体包:

pip install -r .\requirements.txt 

直接按照路径会有问题,找到自己 requirements.txt 文件路径,我这里是pip install -r D:\ultralytics-main\ultralytics-main\requirements.txt

(4)、然后安装ultralytics ,这是必须的。可以用镜像地址。

pip install ultralytics -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com

(5)、安装下载好包,接下来就是验证:

 yolo predict model=yolov8n.pt source='ultralytics/assets/bus.jpg' show=True save=True 

(二)、训练数据集的准备工作
1、准备好数据集:

我们选择的苹果数据集包含图片数量978张

2、划分数据集

我们导出的数据文件结构

标签类别包含两类:fresh_apple和rotten_apple;

├── yolov8_dataset└── train└── images (folder including all training images)└── labels (folder including all training labels)└── test└── images (folder including all testing images)└── labels (folder including all testing labels)└── val└── images (folder including all testing images)└── labels (folder including all testing labels)

划分数据集:

import os
import random
import shutil# 设置随机数种子
random.seed(123)# 定义文件夹路径
root_dir = 'Moon_Cake'
image_dir = os.path.join(root_dir, 'images', 'all')
label_dir = os.path.join(root_dir, 'labels', 'all')
output_dir = 'yolov8_dataset'# 定义训练集、验证集和测试集比例
train_ratio = 0.7
valid_ratio = 0.15
test_ratio = 0.15# 获取所有图像文件和标签文件的文件名(不包括文件扩展名)
image_filenames = [os.path.splitext(f)[0] for f in os.listdir(image_dir)]
label_filenames = [os.path.splitext(f)[0] for f in os.listdir(label_dir)]# 随机打乱文件名列表
random.shuffle(image_filenames)# 计算训练集、验证集和测试集的数量
total_count = len(image_filenames)
train_count = int(total_count * train_ratio)
valid_count = int(total_count * valid_ratio)
test_count = total_count - train_count - valid_count# 定义输出文件夹路径
train_image_dir = os.path.join(output_dir, 'train', 'images')
train_label_dir = os.path.join(output_dir, 'train', 'labels')
valid_image_dir = os.path.join(output_dir, 'valid', 'images')
valid_label_dir = os.path.join(output_dir, 'valid', 'labels')
test_image_dir = os.path.join(output_dir, 'test', 'images')
test_label_dir = os.path.join(output_dir, 'test', 'labels')# 创建输出文件夹
os.makedirs(train_image_dir, exist_ok=True)
os.makedirs(train_label_dir, exist_ok=True)
os.makedirs(valid_image_dir, exist_ok=True)
os.makedirs(valid_label_dir, exist_ok=True)
os.makedirs(test_image_dir, exist_ok=True)
os.makedirs(test_label_dir, exist_ok=True)# 将图像和标签文件划分到不同的数据集中
for i, filename in enumerate(image_filenames):if i < train_count:output_image_dir = train_image_diroutput_label_dir = train_label_direlif i < train_count + valid_count:output_image_dir = valid_image_diroutput_label_dir = valid_label_direlse:output_image_dir = test_image_diroutput_label_dir = test_label_dir# 复制图像文件src_image_path = os.path.join(image_dir, filename + '.jpg')dst_image_path = os.path.join(output_image_dir, filename + '.jpg')shutil.copy(src_image_path, dst_image_path)# 复制标签文件src_label_path = os.path.join(label_dir, filename + '.txt')dst_label_path = os.path.join(output_label_dir, filename + '.txt')shutil.copy(src_label_path, dst_label_path)

运行完后我们的数据集就会划分成这个格式了,现在数据准备工作就彻底完成了,接下来我们就可以开始着手训练模型。

这是划分数据集后的文件结构:

3、训练模型

dataset目录下为自己的数据集创建.yaml配置文件

里面写绝对路径:

4、预测模型

设置训练参数,迭代200次,训练次数为10次,开始训练

训练完成后,根目录下会产生一个run的文件夹,里面就存有训练好的结果

三、检测结果与思考:

我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练的过程。图中苹果的新鲜度和置信度值都标注出来了,预测速度较快。

1、训练阶段:

使用了YOLOv8算法对数据集训练,总计训练了200轮。在训练过程中,我们使用tensorboard(可视化tensorflow模型工具)记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征

2、训练结束:

一般我们会接触到两个指标,分别是召回率recall和精度precision,两个指标p和r都是简单地从一个角度来判断模型的好坏,均是介于0到1之间的数值,其中接近于1表示模型的性能越好,接近于0表示模型的性能越差,为了综合评价目标检测的性能,一般采用均值平均密度map来进一步评估模型的好坏。我们通过设定不同的置信度的阈值,可以得到在模型在不同的阈值下所计算出的p值和r值,一般情况下,p值和r值是负相关的,绘制出来可以得到如下图所示的曲线,其中曲线的面积我们称AP,目标检测模型中每种目标可计算出一个AP值,对所有的AP值求平均则可以得到模型的mAP值。

我们对模型在测试集上进行了评估,得到了以下结果。下图展示了我们训练的YOLOv8模型在测试集上的PR曲线。可以看到,模型在不同类别上都取得了较高的召回率和精确率,我们的模型在验证集上的均值平均准确率为0.926。

训练过程视频:

苹果新鲜度识别-CSDN直播

四、知识体系:  

(一)、网络定义:

YOLO检测网络包括24个卷积层和2个全连接层,其中,卷积层用来提取图像特征,全连接层用来预测图像位置和类别概率值。

(二)、输出定义:

YOLO将输入图像分成SxS个格子,每个格子负责检测‘落入’该格子的物体。若某个物体的中心位置的坐标落入到某个格子,那么这个格子就负责检测出这个物体。

(三)、Loss函数定义:

YOLO使用均方和误差作为loss函数来优化模型参数,即网络输出的SS(B5 + C)维向量与真实图像的对应SS*(B*5 + C)维向量的均方和误差。

(四)、训练:
YOLO模型训练分为两步:

(1)预训练。使用ImageNet,1000类数据训练YOLO网络的前20个卷积层+1个average池化层+1个全连接层。训练图像分辨率resize到224x224。

(2)在预训练中得到的前20个卷积层网络参数来初始化YOLO模型前20个卷积层的网络参数,然后用VOC 20类标注数据进行YOLO模型训练。为提高图像精度,在训练检测模型时,将输入图像分辨率resize到448x448

五、模型结构设计

六、模型推理过程

(1) bbox 积分形式转换为 4d bbox 格式
对 Head 输出的 bbox 分支进行转换,利用 Softmax 和 Conv 计算将积分形式转换为 4 维 bbox 格式
(2) 维度变换
YOLOv8 输出特征图尺度为 80x80、40x40 和 20x20 的三个特征图。Head 部分输出分类和回归共 6 个尺度的特征图。
将 3 个不同尺度的类别预测分支、bbox 预测分支进行拼接,并进行维度变换。为了后续方便处理,会将原先的通道维度置换到最后,类别预测分支 和 bbox 预测分支 shape 分别为 (b, 80x80+40x40+20x20, 80)=(b,8400,80),(b,8400,4)。
(3) 解码还原到原图尺度
分类预测分支进行 Sigmoid 计算,而 bbox 预测分支需要进行解码,还原为真实的原图解码后 xyxy 格式。
(4) 阈值过滤
遍历 batch 中的每张图,采用 score_thr 进行阈值过滤。在这过程中还需要考虑 multi_label 和 nms_pre,确保过滤后的检测框数目不会多于 nms_pre。
(5) 还原到原图尺度和 nms
基于前处理过程,将剩下的检测框还原到网络输出前的原图尺度,然后进行 nms 即可。最终输出的检测框不能多于 max_per_img。

有一个特别注意的点:YOLOv5 中采用的 Batch shape 推理策略,在 YOLOv8 推理中暂时没有开启,不清楚后面是否会开启,在 MMYOLO 中快速测试了下,如果开启 Batch shape 会涨大概 0.1~0.2。

七、小总结:

综上,我们训练的YOLOv8模型在苹果新鲜度检测数据集上表现良好,具有较高的检测精度,快速、准确的检测效果,可以在实际场景中应用。


 

这篇关于深度学习——苹果新鲜度识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/629728

相关文章

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

苹果macOS 26 Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色

《苹果macOS26Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色》在整体系统设计方面,macOS26采用了全新的玻璃质感视觉风格,应用于Dock栏、应用图标以及桌面小部件等多个界面... 科技媒体 MACRumors 昨日(6 月 13 日)发布博文,报道称在 macOS 26 Tahoe 中