数据结构——单链表上基本操作的实现

2024-01-20 19:28

本文主要是介绍数据结构——单链表上基本操作的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.按位序插入(带头结点)

==ListInsert(&L, i, e): ==在表L中的第i个位置上插入指定元素e = 找到第i-1个结点(前驱结点),将新结点插入其后;其中头结点可以看作第0个结点,故i=1时也适用。

typedef struct LNode{ ElemType data; struct LNode *next;

}LNode, *LinkList;

//在第i个位置插入元素e带头结点

bool ListInsert(LinkList &L, int i, ElemType e){

//判断i的合法性, i是位序号(1开始) if(i<1)

LNode *p; int j=0;

p = L;

//循环找到第i-1个结点

while(p!=NULL && j<i-1){ p = p->next;

j++;

}

if (p==NULL)

return false;

//在第i-1个结点后插入新结点

LNode *s = (LNode *)malloc(sizeof(LNode)); //申请一个结点s->data = e;

s->next = p->next;

p->next = s;                   //将结点s连到p,后两步千万不能颠倒qwq

return true;

}

平均时间复杂度:O(n)

2.按位序插入(不带头结点)

==ListInsert(&L, i, e): ==在表L中的第i个位置上插入指定元素e = 找到第i-1个结点(前驱结点),将新结点插入其后; 因为不带头结点,所以不存在0结点,因此!i=1 时,需要特殊处理——插入(删除)1个元素时,需要更改头指针L;

typedef struct LNode{ ElemType data; struct LNode *next;

}LNode, *LinkList;

bool ListInsert(LinkList &L, int i, ElemType e){

if(i<1)

return false;

//插入到第1个位置时的操作有所不同! if(i==1){

LNode *s = (LNode *)malloc(size of(LNode)); s->data =e;

s->next =L;

L=s;           //头指针指向新结点return true;

}

//i>1的情况与带头结点一样!唯一区别是j的初始值为1 LNode *p;  //指针p指向当前扫描到的结点int j=1;    //当前p指向的是第几个结点

p = L;           //L指向头结点,头结点是第0个结点(不存数据)

//循环找到第i-1个结点

while(p!=NULL && j<i-1){ p = p->next;

j++;

}

if (p==NULL)

return false;

//在第i-1个结点后插入新结点

LNode *s = (LNode *)malloc(sizeof(LNode)); //申请一个结点s->data = e;

s->next = p->next;

p->next = s; return true;

}

3.指定结点的后插操作:

==InsertNextNode(LNode *p, ElemType e):== 给定一个结点p,在其之后插入元素e; 根据单链表的链接指针只能往后查找,故给定一个结点p,那么p之后的结点我们都可知,但是p结点之前的结点无法得 ;

typedef struct LNode{ ElemType data; struct LNode *next;

}LNode, *LinkList;

bool InsertNextNode(LNode *p, ElemType e){ if(p==NULL){

return false;

}

LNode *s = (LNode *)malloc(sizeof(LNode));

//某些情况下分配失败,比如内存不足if(s==NULL)

return false; s->data = e;

s->next = p->next;

p->next = s;

return true;}

//有了后插操作,那么在第i个位置上插入指定元素e的代码可以改成:

bool ListInsert(LinkList &L, int i, ElemType e){ if(i<1)

return False;

LNode *p;

int j=0;

p = L;

//循环找到第i-1个结点

while(p!=NULL && j<i-1){ p = p->next;

j++;

}

return InsertNextNode(p, e)

}

4.指定结点的前插操作

思想:设待插入结点是s,将s插入到p的前面。我们仍然可以将s插入到*p的后面。然后将p->datas-

>data交换,这样既能满足了逻辑关系,又能是的时间复杂度为O(1)

//前插操作:在p结点之前插入元素e

bool InsertPriorNode(LNode *p, ElenType e){ if(p==NULL)

return false;

LNode *s = (LNode *)malloc(sizeof(LNode)); if(s==NULL) //内存分配失败

return false;

//重点

s->next = p->next;

p->next = s; //新结点s连到p之后s->data = p->data; //p中元素复制到s p->data = e; //p中元素覆盖为e

return true

}  //时间复杂度为O(1)

5.按位序删除节点(带头结点)

==ListDelete(&L, i, &e):== 删除操作,删除表L中第i个位置的元素,并用e返回删除元素的值;头结点视为

0结点;

思路:找到第i-1个结点,将其指针指向第i+1个结点,并释放第i个结点;

typedef struct LNode{

ElemType data;

struct LNode *next;

}LNode, *LinkList;

bool ListDelete(LinkList &L, int i, ElenType &e){

if(i<1)

return false;

LNode *p;

int j=0; p = L;

//循环找到第i-1个结点

while(p!=NULL && j<i-1){ p = p->next;

j++;

}

if(p==NULL)

return false;

if(p->next == NULL) //i-1个结点之后已无其他结点

return false;

LNode *q = p->next; e = q->data;

p->next = q->next;

free(q)

return true;

}

时间复杂度分析:

最坏,平均时间复杂度:O(n)

最好时间复杂度:删除第一个结点 O(1)

6.指定结点的删除

bool DeleteNode(LNode *p){ if(p==NULL)

return false;

LNode *q = p->next;       //q指向*p的后继结点

p->data = p->next->data; //p和后继结点交换数据域p->next = q->next;   //*q结点从链中断开” free(q);

return true;

} //时间复杂度 = O(1)

心得体会

1. 链表的动态性质:链表结构可以在运行时动态地插入和删除节点,这是它与数组最大的不同之处。链表不需要预分配固定的存储空间,可以根据需要动态分配。

2. 头结点的便捷性:使用头结点可以简化插入和删除操作,因为无论在链表的任何位置进行这些操作,都有一个统一的节点来参考,即头结点。

3. 指针的重要性:链表的操作很大程度上依赖于指针,正确地移动和更新指针是确保链表结构正确性和稳定性的关键。

4. 复杂度的理解:虽然链表允许O(1)时间复杂度的元素插入和删除(在某些条件下),但按位序操作通常需要O(n)的时间复杂度,因为可能需要遍历整个链表以找到正确的位置。

5. 内存管理:在C中使用链表时,必须小心处理内存的分配和释放。每次创建新节点时,都需要使用`malloc`分配内存,并在删除节点时使用`free`释放内存,以避免内存泄漏。

6. 边界条件的处理:在链表的操作中,需要特别注意边界条件,例如插入或删除第一个元素时,可能需要特殊处理,比如更新头指针。

7. 错误处理:适当的错误处理是链表操作中不可忽视的部分。例如,当内存分配失败时,需要返回错误信息,并避免程序崩溃。

8. 算法优化:有时候,通过一些巧妙的方法可以优化链表的操作,比如前插操作可以通过交换数据来避免复杂的节点断开和连接,这样可以减少一些不必要的指针操作。

这篇关于数据结构——单链表上基本操作的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/627082

相关文章

Flutter实现文字镂空效果的详细步骤

《Flutter实现文字镂空效果的详细步骤》:本文主要介绍如何使用Flutter实现文字镂空效果,包括创建基础应用结构、实现自定义绘制器、构建UI界面以及实现颜色选择按钮等步骤,并详细解析了混合模... 目录引言实现原理开始实现步骤1:创建基础应用结构步骤2:创建主屏幕步骤3:实现自定义绘制器步骤4:构建U

SpringBoot中四种AOP实战应用场景及代码实现

《SpringBoot中四种AOP实战应用场景及代码实现》面向切面编程(AOP)是Spring框架的核心功能之一,它通过预编译和运行期动态代理实现程序功能的统一维护,在SpringBoot应用中,AO... 目录引言场景一:日志记录与性能监控业务需求实现方案使用示例扩展:MDC实现请求跟踪场景二:权限控制与

Android实现定时任务的几种方式汇总(附源码)

《Android实现定时任务的几种方式汇总(附源码)》在Android应用中,定时任务(ScheduledTask)的需求几乎无处不在:从定时刷新数据、定时备份、定时推送通知,到夜间静默下载、循环执行... 目录一、项目介绍1. 背景与意义二、相关基础知识与系统约束三、方案一:Handler.postDel

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义