python 使用ddddocr库实现滑块验证码滑动验证

2024-01-20 18:44

本文主要是介绍python 使用ddddocr库实现滑块验证码滑动验证,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一. 识别滑块缺口

  1. 使用ddddocr识别
    该算法识别准确率为95%左右,测试三轮,每轮测试100次

def generate_distance(slice_url, bg_url):""":param bg_url: 背景图地址:param slice_url: 滑块图地址:return: distance:rtype: Integer"""slide = ddddocr.DdddOcr(det=False, ocr=False, show_ad=False)slice_image = requests.get(slice_url).contentbg_image = requests.get(bg_url).contentresult = slide.slide_match(target_bytes, bg_image, simple_target=True)return result['target'][0]
  1. 使用cv2识别
    该算法识别准确率为95%左右,测试三轮,每轮测试100次

def generate_distance(slice_url, bg_url):""":param bg_url: 背景图地址:param slice_url: 滑块图地址:return: distance:rtype: Integer"""slice_image = np.asarray(bytearray(requests.get(slice_url).content), dtype=np.uint8)slice_image = cv2.imdecode(slice_image, 1)slice_image = cv2.Canny(slice_image, 255, 255)bg_image = np.asarray(bytearray(requests.get(bg_url).content), dtype=np.uint8)bg_image = cv2.imdecode(bg_image, 1)bg_image = cv2.pyrMeanShiftFiltering(bg_image, 5, 50)bg_image = cv2.Canny(bg_image, 255, 255)result = cv2.matchTemplate(bg_image, slice_image, cv2.TM_CCOEFF_NORMED)min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)return max_loc[0]

二. 构造滑块轨迹

  1. 构造轨迹库
    图片长度为300,理论上就300种轨迹,实际上应该是200+种,还要减去滑块图的长度80
    手动滑他个几百次,并把距离和轨迹记录下来,识别出距离后直接查对应轨迹
  2. 算法构造轨迹track

def generate_track(distance):def __ease_out_expo(step):return 1 if step == 1 else 1 - pow(2, -10 * step)tracks = [[random.randint(20, 60), random.randint(10, 40), 0]]count = 30 + int(distance / 2)_x, _y = 0, 0for item in range(count):x = round(__ease_out_expo(item / count) * distance)t = random.randint(10, 20)if x == _x:continuetracks.append([x - _x, _y, t])_x = xtracks.append([0, 0, random.randint(200, 300)])times = sum([track[2] for track in tracks])return tracks, times

三. 结语

本篇文章篇幅不长,主要也没啥好说的,验证码研究多了,识别和轨迹就那几套方法,换汤不换药
函数a(e, t)中的重头戏:c.guid()、_.encrypt()、i.encrypt()、c.arrayToHex()四个函数我们放到浩瀚篇再说吧,不然我这紫极魔瞳四大境界变成三大境界了,哈哈哈


 

这篇关于python 使用ddddocr库实现滑块验证码滑动验证的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/626957

相关文章

使用Redis快速实现共享Session登录的详细步骤

《使用Redis快速实现共享Session登录的详细步骤》在Web开发中,Session通常用于存储用户的会话信息,允许用户在多个页面之间保持登录状态,Redis是一个开源的高性能键值数据库,广泛用于... 目录前言实现原理:步骤:使用Redis实现共享Session登录1. 引入Redis依赖2. 配置R

SpringBoot实现RSA+AES自动接口解密的实战指南

《SpringBoot实现RSA+AES自动接口解密的实战指南》在当今数据泄露频发的网络环境中,接口安全已成为开发者不可忽视的核心议题,RSA+AES混合加密方案因其安全性高、性能优越而被广泛采用,本... 目录一、项目依赖与环境准备1.1 Maven依赖配置1.2 密钥生成与配置二、加密工具类实现2.1

使用Python的requests库调用API接口的详细步骤

《使用Python的requests库调用API接口的详细步骤》使用Python的requests库调用API接口是开发中最常用的方式之一,它简化了HTTP请求的处理流程,以下是详细步骤和实战示例,涵... 目录一、准备工作:安装 requests 库二、基本调用流程(以 RESTful API 为例)1.

在Java中实现线程之间的数据共享的几种方式总结

《在Java中实现线程之间的数据共享的几种方式总结》在Java中实现线程间数据共享是并发编程的核心需求,但需要谨慎处理同步问题以避免竞态条件,本文通过代码示例给大家介绍了几种主要实现方式及其最佳实践,... 目录1. 共享变量与同步机制2. 轻量级通信机制3. 线程安全容器4. 线程局部变量(ThreadL

Python清空Word段落样式的三种方法

《Python清空Word段落样式的三种方法》:本文主要介绍如何用python-docx库清空Word段落样式,提供三种方法:设置为Normal样式、清除直接格式、创建新Normal样式,注意需重... 目录方法一:直接设置段落样式为"Normal"方法二:清除所有直接格式设置方法三:创建新的Normal样

Python调用LibreOffice处理自动化文档的完整指南

《Python调用LibreOffice处理自动化文档的完整指南》在数字化转型的浪潮中,文档处理自动化已成为提升效率的关键,LibreOffice作为开源办公软件的佼佼者,其命令行功能结合Python... 目录引言一、环境搭建:三步构建自动化基石1. 安装LibreOffice与python2. 验证安装

把Python列表中的元素移动到开头的三种方法

《把Python列表中的元素移动到开头的三种方法》在Python编程中,我们经常需要对列表(list)进行操作,有时,我们希望将列表中的某个元素移动到最前面,使其成为第一项,本文给大家介绍了把Pyth... 目录一、查找删除插入法1. 找到元素的索引2. 移除元素3. 插入到列表开头二、使用列表切片(Lis

Python按照24个实用大方向精选的上千种工具库汇总整理

《Python按照24个实用大方向精选的上千种工具库汇总整理》本文整理了Python生态中近千个库,涵盖数据处理、图像处理、网络开发、Web框架、人工智能、科学计算、GUI工具、测试框架、环境管理等多... 目录1、数据处理文本处理特殊文本处理html/XML 解析文件处理配置文件处理文档相关日志管理日期和

Python标准库datetime模块日期和时间数据类型解读

《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3