python 使用ddddocr库实现滑块验证码滑动验证

2024-01-20 18:44

本文主要是介绍python 使用ddddocr库实现滑块验证码滑动验证,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一. 识别滑块缺口

  1. 使用ddddocr识别
    该算法识别准确率为95%左右,测试三轮,每轮测试100次

def generate_distance(slice_url, bg_url):""":param bg_url: 背景图地址:param slice_url: 滑块图地址:return: distance:rtype: Integer"""slide = ddddocr.DdddOcr(det=False, ocr=False, show_ad=False)slice_image = requests.get(slice_url).contentbg_image = requests.get(bg_url).contentresult = slide.slide_match(target_bytes, bg_image, simple_target=True)return result['target'][0]
  1. 使用cv2识别
    该算法识别准确率为95%左右,测试三轮,每轮测试100次

def generate_distance(slice_url, bg_url):""":param bg_url: 背景图地址:param slice_url: 滑块图地址:return: distance:rtype: Integer"""slice_image = np.asarray(bytearray(requests.get(slice_url).content), dtype=np.uint8)slice_image = cv2.imdecode(slice_image, 1)slice_image = cv2.Canny(slice_image, 255, 255)bg_image = np.asarray(bytearray(requests.get(bg_url).content), dtype=np.uint8)bg_image = cv2.imdecode(bg_image, 1)bg_image = cv2.pyrMeanShiftFiltering(bg_image, 5, 50)bg_image = cv2.Canny(bg_image, 255, 255)result = cv2.matchTemplate(bg_image, slice_image, cv2.TM_CCOEFF_NORMED)min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)return max_loc[0]

二. 构造滑块轨迹

  1. 构造轨迹库
    图片长度为300,理论上就300种轨迹,实际上应该是200+种,还要减去滑块图的长度80
    手动滑他个几百次,并把距离和轨迹记录下来,识别出距离后直接查对应轨迹
  2. 算法构造轨迹track

def generate_track(distance):def __ease_out_expo(step):return 1 if step == 1 else 1 - pow(2, -10 * step)tracks = [[random.randint(20, 60), random.randint(10, 40), 0]]count = 30 + int(distance / 2)_x, _y = 0, 0for item in range(count):x = round(__ease_out_expo(item / count) * distance)t = random.randint(10, 20)if x == _x:continuetracks.append([x - _x, _y, t])_x = xtracks.append([0, 0, random.randint(200, 300)])times = sum([track[2] for track in tracks])return tracks, times

三. 结语

本篇文章篇幅不长,主要也没啥好说的,验证码研究多了,识别和轨迹就那几套方法,换汤不换药
函数a(e, t)中的重头戏:c.guid()、_.encrypt()、i.encrypt()、c.arrayToHex()四个函数我们放到浩瀚篇再说吧,不然我这紫极魔瞳四大境界变成三大境界了,哈哈哈


 

这篇关于python 使用ddddocr库实现滑块验证码滑动验证的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/626957

相关文章

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环