各类优化方法总结(从SGD到FTRL)

2024-01-20 18:08

本文主要是介绍各类优化方法总结(从SGD到FTRL),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 目录
  • 各类优化方法总结
    • 1. SGD
    • 2. Momentum
    • 3. Nesterov
    • 4. Adagrad
    • 5. Adadelta
    • 6. Adam
    • 7. FTRL
  • 参考资料


各类优化方法总结

为了方便描述,假设第 t t 轮要更新的某参数是wt loss l o s s 函数关于 wt w t 的偏导数表示为 gt g t ,即:

gt=Lwt g t = ∂ L ∂ w t

1. SGD

wt=wt1ηgt w t = w t − 1 − η ⋅ g t

可以对一个样本都计算一次梯度并更新一次参数,也可以先对一整个 batch b a t c h 一起计算梯度,再更新参数(称为batch-SGD)。

优点

  1. 简单

缺点

  1. 所有的参数使用同样的学习率 η η ,不够灵活
  2. 容易陷入局部最优
  3. 需要人工设定 η η

2. Momentum

mt=μmt1+gtwt=wt1ηmt m t = μ ⋅ m t − 1 + g t w t = w t − 1 − η ⋅ m t

实际上就是用加权累积的梯度代替本轮梯度,每次的更新方向并不是纯粹的梯度,而是要加上上一次迭代的一部分。可以将第 t t 轮的梯度看成下面这个式子,显然越早期的梯度贡献越小。
mt=i=1tμtigi

此外,将 Δwt Δ w t 展开得到 Δwt=ηmt=ημmtηgt Δ w t = − η ⋅ m t = − η ⋅ μ ⋅ m t − η ⋅ g t ,可以看到momentum不会直接改变当前梯度 gt g t

优点
momentum在前后梯度一致时有利于加速收敛,不一致时能做方向纠正,同时减少陷入局部最优。

  1. 在前后两次梯度方向比较接近时(一般是训练初期),前后两次在相近的方向上叠加,能够加速训练。
  2. 在前后两次梯度方向相差很远时(训练后期在局部最小附近来回震荡),虽然 gt g t 可能很小,但是有历史梯度的累积在, mt m t 不至于太小,有利于跳出局部最优。

缺点

  1. 仍然需要人工设定 η η

3. Nesterov

gt=f(wt1ημmt1) g t = ▽ f ( w t − 1 − η ⋅ μ ⋅ m t − 1 )

mt=μmt1+gtwt=wt1ηmt m t = μ ⋅ m t − 1 + g t w t = w t − 1 − η ⋅ m t

可以看到,Nesterov只是在Momentum的基础上,修改了当前梯度 gt g t ,让历史累积的梯度 mt1 m t − 1 也影响到当前的梯度 gt g t

缺点

  1. 仍然需要人工设定 η η

4. Adagrad

nt=nt1+g2twt=wt1ηnt+ϵgt n t = n t − 1 + g t 2 w t = w t − 1 − η n t + ϵ ⋅ g t

nt n t 其实是 tig2i ∑ i t g i 2 ,对于稀疏梯度,该平方和一般会比较小,使得参数的学习率偏大,对于非稀疏梯度,该平方和一般比较大,使得参数学习率偏小。因此Adagrad适合用来处理稀疏梯度。

优点

  1. 每个参数都有自己的学习率。
  2. 训练初期 gt g t 平方和比较小,学习率较大,能够加速训练
  3. 训练后期 gt g t 平方和比较大,学习率较小,能够约束梯度
  4. 适合处理稀疏梯度

缺点

  1. 仍然需要人工设定 η η
  2. 训练后期平方和太大,使得梯度 0 → 0 ,容易导致训练提前结束

5. Adadelta

E[g2]t=vE[g2]t1+(1v)g2t E [ g 2 ] t = v ⋅ E [ g 2 ] t − 1 + ( 1 − v ) ⋅ ⋅ g t 2

wt=wt1t1r=1(wrwr1)E[g2]t+ϵ w t = w t − 1 − ∑ r = 1 t − 1 ( w r − w r − 1 ) E [ g 2 ] t + ϵ

为了减轻Adagrad梯度衰减过快的问题,Adadelta用历史梯度平方的集权均值代替平方和。

优点

  1. 具有Adagrad的优点
  2. 不需要人工设定 η η
  3. 缓解了Adagrad梯度衰减过快的问题

6. Adam

mt=μmt1+(1μ)gtnt=vnt1+(1v)g2t m t = μ ⋅ m t − 1 + ( 1 − μ ) ⋅ g t n t = v ⋅ n t − 1 + ( 1 − v ) ⋅ g t 2

m̂ t=mt1μn̂ t=nt1v m ^ t = m t 1 − μ n ^ t = n t 1 − v

wt=wt1m̂ tn̂ t+ϵ w t = w t − 1 − m ^ t n ^ t + ϵ

mt m t nt n t 可以分别看作对历史梯度的一阶和二阶矩估计,即对期望 E[g]t E [ g ] t E[g2]t E [ g 2 ] t 的估计, m̂ t m ^ t n̂ t n ^ t 的处理是校正为无偏估计。

优点

  1. 实际上只需要保存梯度的均值,所以基本不需要额外的内存
  2. 不需要人工设定全局学习率 η η
  3. 有观点认为,RNN使用Adam速度快,效果好

7. FTRL

wt+1=argminw(g1:tw+12s=1tσs||wws||22+λ1||w||1) w t + 1 = arg ⁡ min w ( g 1 : t ⋅ w + 1 2 ∑ s = 1 t σ s | | w − w s | | 2 2 + λ 1 | | w | | 1 )

主要用于CTR预测的在线训练,成千上万维度导致大量稀疏特征。一般希望模型参数更加稀疏,但是简单的L1正则无法真正做到稀疏,一些梯度截断方法(TG)的提出就是为了解决这个问题,在这其中FTRL是兼备精度和稀疏性的在线学习方法。FTRL的基本思想是将接近于0的梯度直接置零,计算时直接跳过以减少计算量。

这里给出工程上的伪代码,里面的四个参数是可调的,具体原理尚且没时间看懂,以后有时间的话研究一下Google那篇论文。
这里写图片描述


参考资料

  1. 深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)- ycszen
  2. tensorflow optimizer 总结 - 跬步达千里
  3. Google FTRL论文 - Ad Click Prediction: a View from the Trenches
  4. 梯度下降优化算法综述
  5. 在线学习算法FTRL详解 - 一寒惊鸿
  6. 各大公司广泛使用的在线学习算法FTRL详解
  7. CTR预测算法之FTRL-Proximal

这篇关于各类优化方法总结(从SGD到FTRL)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/626864

相关文章

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java中的工具类命名方法

《Java中的工具类命名方法》:本文主要介绍Java中的工具类究竟如何命名,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java中的工具类究竟如何命名?先来几个例子几种命名方式的比较到底如何命名 ?总结Java中的工具类究竟如何命名?先来几个例子JD

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处