各类优化方法总结(从SGD到FTRL)

2024-01-20 18:08

本文主要是介绍各类优化方法总结(从SGD到FTRL),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 目录
  • 各类优化方法总结
    • 1. SGD
    • 2. Momentum
    • 3. Nesterov
    • 4. Adagrad
    • 5. Adadelta
    • 6. Adam
    • 7. FTRL
  • 参考资料


各类优化方法总结

为了方便描述,假设第 t t 轮要更新的某参数是wt loss l o s s 函数关于 wt w t 的偏导数表示为 gt g t ,即:

gt=Lwt g t = ∂ L ∂ w t

1. SGD

wt=wt1ηgt w t = w t − 1 − η ⋅ g t

可以对一个样本都计算一次梯度并更新一次参数,也可以先对一整个 batch b a t c h 一起计算梯度,再更新参数(称为batch-SGD)。

优点

  1. 简单

缺点

  1. 所有的参数使用同样的学习率 η η ,不够灵活
  2. 容易陷入局部最优
  3. 需要人工设定 η η

2. Momentum

mt=μmt1+gtwt=wt1ηmt m t = μ ⋅ m t − 1 + g t w t = w t − 1 − η ⋅ m t

实际上就是用加权累积的梯度代替本轮梯度,每次的更新方向并不是纯粹的梯度,而是要加上上一次迭代的一部分。可以将第 t t 轮的梯度看成下面这个式子,显然越早期的梯度贡献越小。
mt=i=1tμtigi

此外,将 Δwt Δ w t 展开得到 Δwt=ηmt=ημmtηgt Δ w t = − η ⋅ m t = − η ⋅ μ ⋅ m t − η ⋅ g t ,可以看到momentum不会直接改变当前梯度 gt g t

优点
momentum在前后梯度一致时有利于加速收敛,不一致时能做方向纠正,同时减少陷入局部最优。

  1. 在前后两次梯度方向比较接近时(一般是训练初期),前后两次在相近的方向上叠加,能够加速训练。
  2. 在前后两次梯度方向相差很远时(训练后期在局部最小附近来回震荡),虽然 gt g t 可能很小,但是有历史梯度的累积在, mt m t 不至于太小,有利于跳出局部最优。

缺点

  1. 仍然需要人工设定 η η

3. Nesterov

gt=f(wt1ημmt1) g t = ▽ f ( w t − 1 − η ⋅ μ ⋅ m t − 1 )

mt=μmt1+gtwt=wt1ηmt m t = μ ⋅ m t − 1 + g t w t = w t − 1 − η ⋅ m t

可以看到,Nesterov只是在Momentum的基础上,修改了当前梯度 gt g t ,让历史累积的梯度 mt1 m t − 1 也影响到当前的梯度 gt g t

缺点

  1. 仍然需要人工设定 η η

4. Adagrad

nt=nt1+g2twt=wt1ηnt+ϵgt n t = n t − 1 + g t 2 w t = w t − 1 − η n t + ϵ ⋅ g t

nt n t 其实是 tig2i ∑ i t g i 2 ,对于稀疏梯度,该平方和一般会比较小,使得参数的学习率偏大,对于非稀疏梯度,该平方和一般比较大,使得参数学习率偏小。因此Adagrad适合用来处理稀疏梯度。

优点

  1. 每个参数都有自己的学习率。
  2. 训练初期 gt g t 平方和比较小,学习率较大,能够加速训练
  3. 训练后期 gt g t 平方和比较大,学习率较小,能够约束梯度
  4. 适合处理稀疏梯度

缺点

  1. 仍然需要人工设定 η η
  2. 训练后期平方和太大,使得梯度 0 → 0 ,容易导致训练提前结束

5. Adadelta

E[g2]t=vE[g2]t1+(1v)g2t E [ g 2 ] t = v ⋅ E [ g 2 ] t − 1 + ( 1 − v ) ⋅ ⋅ g t 2

wt=wt1t1r=1(wrwr1)E[g2]t+ϵ w t = w t − 1 − ∑ r = 1 t − 1 ( w r − w r − 1 ) E [ g 2 ] t + ϵ

为了减轻Adagrad梯度衰减过快的问题,Adadelta用历史梯度平方的集权均值代替平方和。

优点

  1. 具有Adagrad的优点
  2. 不需要人工设定 η η
  3. 缓解了Adagrad梯度衰减过快的问题

6. Adam

mt=μmt1+(1μ)gtnt=vnt1+(1v)g2t m t = μ ⋅ m t − 1 + ( 1 − μ ) ⋅ g t n t = v ⋅ n t − 1 + ( 1 − v ) ⋅ g t 2

m̂ t=mt1μn̂ t=nt1v m ^ t = m t 1 − μ n ^ t = n t 1 − v

wt=wt1m̂ tn̂ t+ϵ w t = w t − 1 − m ^ t n ^ t + ϵ

mt m t nt n t 可以分别看作对历史梯度的一阶和二阶矩估计,即对期望 E[g]t E [ g ] t E[g2]t E [ g 2 ] t 的估计, m̂ t m ^ t n̂ t n ^ t 的处理是校正为无偏估计。

优点

  1. 实际上只需要保存梯度的均值,所以基本不需要额外的内存
  2. 不需要人工设定全局学习率 η η
  3. 有观点认为,RNN使用Adam速度快,效果好

7. FTRL

wt+1=argminw(g1:tw+12s=1tσs||wws||22+λ1||w||1) w t + 1 = arg ⁡ min w ( g 1 : t ⋅ w + 1 2 ∑ s = 1 t σ s | | w − w s | | 2 2 + λ 1 | | w | | 1 )

主要用于CTR预测的在线训练,成千上万维度导致大量稀疏特征。一般希望模型参数更加稀疏,但是简单的L1正则无法真正做到稀疏,一些梯度截断方法(TG)的提出就是为了解决这个问题,在这其中FTRL是兼备精度和稀疏性的在线学习方法。FTRL的基本思想是将接近于0的梯度直接置零,计算时直接跳过以减少计算量。

这里给出工程上的伪代码,里面的四个参数是可调的,具体原理尚且没时间看懂,以后有时间的话研究一下Google那篇论文。
这里写图片描述


参考资料

  1. 深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)- ycszen
  2. tensorflow optimizer 总结 - 跬步达千里
  3. Google FTRL论文 - Ad Click Prediction: a View from the Trenches
  4. 梯度下降优化算法综述
  5. 在线学习算法FTRL详解 - 一寒惊鸿
  6. 各大公司广泛使用的在线学习算法FTRL详解
  7. CTR预测算法之FTRL-Proximal

这篇关于各类优化方法总结(从SGD到FTRL)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/626864

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Linux云服务器手动配置DNS的方法步骤

《Linux云服务器手动配置DNS的方法步骤》在Linux云服务器上手动配置DNS(域名系统)是确保服务器能够正常解析域名的重要步骤,以下是详细的配置方法,包括系统文件的修改和常见问题的解决方案,需要... 目录1. 为什么需要手动配置 DNS?2. 手动配置 DNS 的方法方法 1:修改 /etc/res

JavaScript对象转数组的三种方法实现

《JavaScript对象转数组的三种方法实现》本文介绍了在JavaScript中将对象转换为数组的三种实用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录方法1:使用Object.keys()和Array.map()方法2:使用Object.entr

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

SpringBoot中ResponseEntity的使用方法举例详解

《SpringBoot中ResponseEntity的使用方法举例详解》ResponseEntity是Spring的一个用于表示HTTP响应的全功能对象,它可以包含响应的状态码、头信息及响应体内容,下... 目录一、ResponseEntity概述基本特点:二、ResponseEntity的基本用法1. 创

java中判断json key是否存在的几种方法

《java中判断jsonkey是否存在的几种方法》在使用Java处理JSON数据时,如何判断某一个key是否存在?本文就来介绍三种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目http://www.chinasem.cn录第一种方法是使用 jsONObject 的 has 方法