Vue响应式原理学习总结3:渲染watcher

2024-01-20 13:18

本文主要是介绍Vue响应式原理学习总结3:渲染watcher,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

终于到了渲染watcher,看完这篇文章的内容后,大家就可以实现一个响应式系统了,并且能够在页面上有所体现。

源码地址:gitee

系列文章:

1. 基本原理

2. 数组的处理

4. 最终章

Vue项目总结系列文章:

  1. 基础架构
  2. 登录与权限控制

持续更新中。。。

什么是渲染Watcher

vue中有多种watcher,我们之前实现的watcher类似于Vue.$watch,当依赖变化时执行回调函数。而渲染watcher不需要回调函数,渲染watcher接收一个渲染函数而不是依赖的表达式,当依赖发生变化时,自动执行渲染函数

new Watcher(app, renderFn)
复制代码

那么如何做到依赖变化时重新执行渲染函数呢,我们要先对Watcher的构造函数做一些改造

constructor(data, expOrFn, cb) {this.data = data// 修改if (typeof expOrFn === 'function') {this.getter = expOrFn} else {this.getter = parsePath(expOrFn)}this.cb = cbthis.value = this.get()
}// parsePath的改造,返回一个函数
function parsePath(path) {const segments = path.split('.')return function (obj) {for (let key of segments) {if (!obj) returnobj = obj[key]}return obj}
}

这样,this.getter就是一个取值函数了,get修改

get() {pushTarget(this)const data = this.dataconst value = this.getter.call(data, data) // 修改popTarget()return value
}

要想依赖变化时重新执行渲染函数,就要在派发更新阶段做一个更新,因此,update方法也要进行修改:

update() {// 重新执行get方法const value = this.get()// 渲染watcher的value是undefined,因为渲染函数没有返回值// 因此value和this.value都是undefined,不会进入if// 如果依赖是对象,要触发更新if (value !== this.value || isObject(value)) {const oldValue = this.valuethis.value = valuethis.cb.call(this.vm, value, oldValue)}
}function isObject(target) {return typeof target === 'object' && target !== null
}

大家可能会有疑问了,为什么不能直接用this.getter.call(this.data)来重新执行渲染函数呢,这就涉及到下文要提到的重新收集依赖了。但是在此之前,要先解决一个问题:依赖的重复收集

重复的依赖

看这样一个例子

<div>{{ name }} -- {{ name }}
</div>

如果我们渲染这个模板,那么渲染watcher就会依赖两次name。因为解析该模板时,会读取两次name的值,就会触发两次getter,此时Dep.target都是当前watcher,在depend方法中,

depend() {if (Dep.target) {dep.addSub(Dep.target)}
}

依赖会被收集两次,name变化时就会触发两次重新渲染。因此vue采用了以下方式

首先为每个dep添加一个id

let uid = 0constructor() {this.subs = []this.id = uid++ // 增加
}
复制代码
watcher`修改的地方比较多,首先为增加四个属性`deps, depIds, newDeps, newDepIds
this.deps = []             // 存放上次求值时存储自己的dep
this.depIds = new Set()    // 存放上次求值时存储自己的dep的id
this.newDeps = []          // 存放本次求值时存储自己的dep
this.newDepIds = new Set() // 存放本次求值时存储自己的dep的id

​ 每次取值完毕后,会交换depnewDep,并将newDep清空,下文会讲到

我们的思路是,当需要收集watcher时,由watcher来决定自己是否需要被dep收集。在上面的例子中,假设对name取值时,watcherdep1收集,第二次对name取值时,watcher发现自己已经被dep1收集过了,就不会重新收集一遍,代码如下

// dep.depend
depend() {if (Dep.target) {Dep.target.addDep(this) // 让watcher来决定自己是否被dep收集}
}// watcher.addDep
addDep(dep) {const id = dep.id// 如果本次求值过程中,自己没有被dep收集过则进入ifif (!this.newDepIds.has(id)) {// watcher中记录收集自己的dpthis.newDepIds.add(id)this.newDeps.push(dep)if (!this.depIds.has(id)) {dep.addSub(this)}}
}

现在解释一下最后一个if,考虑重新渲染的情况:watcher依赖namename发生了变化,导致watcherget方法执行,会重新对name取值,进入addDep方法时,newDepIds是空的,因此会进入if,来到最后一个if,因为第一次取值时,dep已经收集过watcher了,所以不应该再添加一遍,这个if就是这个作用。

《Vue技术内幕》总结的很好:

  1. newDepsnewDepIds用来再一次取值过程中避免重复依赖,比如:{{ name }} -- {{ name }}
  2. depsdepIds用来再重新渲染的取值过程中避免重复依赖

再执行get方法最后会清空newDeps,newDepIds

cleanUpDeps() {// 交换depIds和newDepIdslet tmp = this.depIdsthis.depIds = this.newDepIdsthis.newDepIds = tmp// 清空newDepIdsthis.newDepIds.clear()// 交换deps和newDepstmp = this.depsthis.deps = this.newDepsthis.newDeps = tmp// 清空newDepsthis.newDeps.length = 0}

依赖的重新收集

我所理解的依赖重新收集包括两部分内容:收集新的依赖和删除无效依赖。其实收集新依赖再上面的代码中已经有所体现了,虽然前面的代码中对重复依赖做了很多判断,但是能够收集到依赖的基本前提是Dep.target存在,从Watcher的代码中可以看出,只有在get方法执行过程中,Dep.target是存在的,因此,我们在update方法中使用了get方法来重新触发渲染函数,而不是getter.call()。并且重新收集依赖是必要的,比如使用了v-if的情况,因此,现在的响应式系统比之前的固定依赖版本又有了很大进步。

至于删除无效依赖部分,可以在cleanUpDeps中添加如下代码

cleanUpDeps() {// 增加let i = this.deps.lengthwhile (i--) {const dep = this.deps[i]if (!this.newDepIds.has(dep.id)) {dep.removeSub(this)}}let tmp = this.depIds// ...
}

在求值结束(也就是依赖收集结束)后,如果本次求值过程中,发现有些dep在上次求值时收集了自己,但是这次求值时没有收集自己,说明该数据已经不需要自己了,将自己从dep中删除即可

// Dep.js
removeSub(sub) {remove(this.subs, sub)
}function remove(arr, item) {if (!arr.length) returnconst index = arr.indexOf(item)if (index > -1) {return arr.splice(index, 1)}
}

这样,我们的响应式系统就比较完整了

总结

其实所谓的渲染watcher和其他的watcher区别不大,只是依赖变化时自动执行渲染函数而已,上文中提到的重复依赖的处理,依赖重新收集是通用的。

下一篇文章将会做一个简单的模板编译器,让我们的响应式系统与页面渲染相结合,并且会实现v-model的双向绑定,请大家关注。

如果各位看官感觉文章还可以的话,就请点个赞吧!!!

这篇关于Vue响应式原理学习总结3:渲染watcher的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/626136

相关文章

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

HTML5中的Microdata与历史记录管理详解

《HTML5中的Microdata与历史记录管理详解》Microdata作为HTML5新增的一个特性,它允许开发者在HTML文档中添加更多的语义信息,以便于搜索引擎和浏览器更好地理解页面内容,本文将探... 目录html5中的Mijscrodata与历史记录管理背景简介html5中的Microdata使用M

html5的响应式布局的方法示例详解

《html5的响应式布局的方法示例详解》:本文主要介绍了HTML5中使用媒体查询和Flexbox进行响应式布局的方法,简要介绍了CSSGrid布局的基础知识和如何实现自动换行的网格布局,详细内容请阅读本文,希望能对你有所帮助... 一 使用媒体查询响应式布局        使用的参数@media这是常用的

HTML5表格语法格式详解

《HTML5表格语法格式详解》在HTML语法中,表格主要通过table、tr和td3个标签构成,本文通过实例代码讲解HTML5表格语法格式,感兴趣的朋友一起看看吧... 目录一、表格1.表格语法格式2.表格属性 3.例子二、不规则表格1.跨行2.跨列3.例子一、表格在html语法中,表格主要通过< tab

Windows Docker端口占用错误及解决方案总结

《WindowsDocker端口占用错误及解决方案总结》在Windows环境下使用Docker容器时,端口占用错误是开发和运维中常见且棘手的问题,本文将深入剖析该问题的成因,介绍如何通过查看端口分配... 目录引言Windows docker 端口占用错误及解决方案汇总端口冲突形成原因解析诊断当前端口情况解