xxl-job使用(小白也看得懂)

2024-01-20 12:30
文章标签 使用 小白 看得懂 xxl job

本文主要是介绍xxl-job使用(小白也看得懂),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分布式任务调度

在微服务架构体系中,服务之间通过网络交互来完成业务处理的,在分布式架构下,一个服务往往会部署多个实例来运行我们的业务,如果在这种分布式系统环境下运行任务调度,我们称之为分布式任务调度

在当体项目中我们直接使用异步任务就可以实现发布任务的效果,但是在微服务中,每个服务是独立的,任务和任务之间是无法协调的,所以我们需要使用xxl-job。

xxl-job简介

XXL-JOB是一个分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。

xxl-job架构图

安装xxl-job

通过docker安装xxl-job

在云服务器中创建目录 /data/applogs,该目录用于挂载xxl-job-admin-applogs。设置对应的数据库信息,设置开机自启动,映射端口,并进行挂载。

1.在搭建之前我们需要先要在云服务器中准备好xxl-job的数据库xxl_job,并初始化数据库。

初始化数据库的sql脚本为:数据库初始化脚本

 2.拖取xxl-job的镜像。

docker pull xuxueli/xxl-job-admin:2.3.0

3.创建目录。

mkdir /data/applogs

 4.启动xxl-job的容器(在此之前需要开放对应的端口)。

docker run -d \
-e PARAMS="--spring.datasource.url=jdbc:mysql://139.9.544.116:3306/xxl_job?useUnicode=true&characterEncoding=UTF-8&autoReconnect=true&serverTimezone=UTC \
--spring.datasource.username=xxl_job \
--spring.datasource.password=123456 \
--spring.datasource.driver-class-name=com.mysql.jdbc.Driver" \
-p  28080:8080 \
-v xxl-job-admin-applogs:/data/applogs \
--name my-xxl-job-admin-2.3.0  \
-d xuxueli/xxl-job-admin:2.3.0

效果图为下:

输入定时任务的管理界面的地址为: 139.9.567.564:28080/xxl-job-admin(IP根据自己修改)

初始的账号: admin 密码:123456
效果图为下:

数据库中表的信息

  • xxl_job_lock:任务调度锁表;
  • xxl_job_group:执行器信息表,维护任务执行器信息;
  • xxl_job_info:调度扩展信息表: 用于保存XXL-JOB调度任务的扩展信息,如任务分组、任务名、机器地址、执行器、执行入参和报警邮件等等;
  • xxl_job_log:调度日志表: 用于保存XXL-JOB任务调度的历史信息,如调度结果、执行结果、调度入参、调度机器和执行器等等;
  • xxl_job_log_report:调度日志报表:用户存储XXL-JOB任务调度日志的报表,调度中心报表功能页面会用到;
  • xxl_job_logglue:任务GLUE日志:用于保存GLUE更新历史,用于支持GLUE的版本回溯功能;
  • xxl_job_registry:执行器注册表,维护在线的执行器和调度中心机器地址信息;
  • xxl_job_user:系统用户表;

xxl-job的使用

使用方式:在服务中编写好执行器(也就是执行的方法)将其注册到xxl-job中,在xxl-job的控制面板中设置定时任务去调用执行器,最终实现定时任务。

xxl-job支持的路由策略非常丰富

  • FIRST(第一个):固定选择第一个机器;
  • LAST(最后一个):固定选择最后一个机器;
  • ROUND(轮询):在线的机器按照顺序一次执行一个
  • RANDOM(随机):随机选择在线的机器;
  • CONSISTENT_HASH(一致性HASH):每个任务按照Hash算法固定选择某一台机器,且所有任务均匀散列在不同机器上。
  • LEAST_FREQUENTLY_USED(最不经常使用):使用频率最低的机器优先被选举;
  • LEAST_RECENTLY_USED(最近最久未使用):最久未使用的机器优先被选举;
  • FAILOVER(故障转移):按照顺序依次进行心跳检测,第一个心跳检测成功的机器选定为目标执行器并发起调度;
  • BUSYOVER(忙碌转移):按照顺序依次进行空闲检测,第一个空闲检测成功的机器选定为目标执行器并发起调度;
  • SHARDING_BROADCAST(分片广播):广播触发对应集群中所有机器执行一次任务,同时系统自动传递分片参数;可根据分片参数开发分片任务; 

 xxl-job使用格式

引入对应的依赖

<dependency><groupId>com.xuxueli</groupId><artifactId>xxl-job-core</artifactId>
</dependency>

创建配置类XxlJobConfig用于配置必要信息

import com.xxl.job.core.executor.impl.XxlJobSpringExecutor;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;/*** xxl-job config*/
@Configuration
public class XxlJobConfig {private Logger logger = LoggerFactory.getLogger(XxlJobConfig.class);@Value("${xxl.job.admin.addresses}")private String adminAddresses;@Value("${xxl.job.accessToken:}")private String accessToken;@Value("${xxl.job.executor.appname}")private String appname;@Value("${xxl.job.executor.address:}")private String address;@Value("${xxl.job.executor.ip:}")private String ip;@Value("${xxl.job.executor.port:0}")private int port;@Value("${xxl.job.executor.logpath:}")private String logPath;@Value("${xxl.job.executor.logretentiondays:}")private int logRetentionDays;//自动配置到ioc中@Beanpublic XxlJobSpringExecutor xxlJobExecutor() {XxlJobSpringExecutor xxlJobSpringExecutor = new XxlJobSpringExecutor();xxlJobSpringExecutor.setAdminAddresses(adminAddresses);xxlJobSpringExecutor.setAppname(appname);xxlJobSpringExecutor.setAddress(address);xxlJobSpringExecutor.setIp(ip);xxlJobSpringExecutor.setPort(port);xxlJobSpringExecutor.setAccessToken(accessToken);xxlJobSpringExecutor.setLogPath(logPath);xxlJobSpringExecutor.setLogRetentionDays(logRetentionDays);return xxlJobSpringExecutor;}}

编写执行器JobHandler(例子)

import cn.hutool.core.util.RandomUtil;
import com.xxl.job.core.context.XxlJobHelper;
import com.xxl.job.core.handler.annotation.XxlJob;
import org.springframework.stereotype.Component;import java.time.LocalDateTime;
import java.util.Arrays;
import java.util.List;/*** 任务处理器*/
@Component
public class JobHandler {private List<Integer> dataList = Arrays.asList(1, 2, 3, 4, 5);/*** 普通任务*/@XxlJob("firstJob")public void firstJob() throws Exception {System.out.println("firstJob执行了.... " + LocalDateTime.now());for (Integer data : dataList) {System.out.println("data= {}" + data);Thread.sleep(RandomUtil.randomInt(100, 500));}System.out.println("firstJob执行结束了.... " + LocalDateTime.now());}
}

在@XxlJob中配置的属性就是执行器的名字。

进入任务调度中心发布定时任务,设置执行器的AppName也就是当前微服务的application.name

选择执行器,新建任务。

 在新建任务中JobHandler就是我们在微服务中编写的任务处理器的名称,该名称就是对应的@XxlJob中属性的值。

进行测试,点击执行一次,弹出窗口直接迪点击确认。

该测试处理器中,就是将属性dataList遍历一遍。

这是单个xxl-job的情况,接下来我吗们需要实现xxl-job集群的使用。

在Handler中编写一个处理器(通过取模的方式,让每个xxl-job都可以处理到任务,例如:三个集群,我们就以三取模,每个xxl-job就分别处理值为 0,1 ,2的任务

import cn.hutool.core.util.RandomUtil;
import com.xxl.job.core.context.XxlJobHelper;
import com.xxl.job.core.handler.annotation.XxlJob;
import org.springframework.stereotype.Component;import java.time.LocalDateTime;
import java.util.Arrays;
import java.util.List;/*** 任务处理器*/
@Component
public class JobHandler {private List<Integer> dataList = Arrays.asList(1, 2, 3, 4, 5);/*** 分片式任务*/@XxlJob("shardingJob")public void shardingJob() throws Exception {// 分片参数// 分片节点总数int shardTotal = XxlJobHelper.getShardTotal();// 当前节点下标,从0开始int shardIndex = XxlJobHelper.getShardIndex();System.out.println("shardingJob执行了.... " + LocalDateTime.now());for (Integer data : dataList) {if (data % shardTotal == shardIndex) {System.out.println("data= {}"+ data);Thread.sleep(RandomUtil.randomInt(100, 500));}}System.out.println("shardingJob执行结束了.... " + LocalDateTime.now());}
}

在任务管理中添加一个新的任务

进行测试,两个xxl-job都参与了任务的处理。

 真正意义上实现了轮询的效果,而在路由策略的轮询的效果则是每一个xxl-job按顺序单独处理一次任务,这样任务还是没有达到负载均衡的效果。

这篇关于xxl-job使用(小白也看得懂)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/626011

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

使用Python开发一个现代化屏幕取色器

《使用Python开发一个现代化屏幕取色器》在UI设计、网页开发等场景中,颜色拾取是高频需求,:本文主要介绍如何使用Python开发一个现代化屏幕取色器,有需要的小伙伴可以参考一下... 目录一、项目概述二、核心功能解析2.1 实时颜色追踪2.2 智能颜色显示三、效果展示四、实现步骤详解4.1 环境配置4.