Matlab解决简单4次牛顿差值,Matlab插值法

2024-01-20 08:50

本文主要是介绍Matlab解决简单4次牛顿差值,Matlab插值法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

实验目的:

1.Matlab中多项式的表示及多项式运算

2.用Matlab实现拉格朗日及牛顿插值法

3.用多项式插值法拟合数据

实验要求:

1.掌握多项式的表示和运算

2.拉格朗日插值法的实现(参见吕同富版教材)

3.牛顿插值法的实现(参见吕同富版教材)

实验内容:

1.多项式的表达式和创建;多项式的四则运算、导数与积分。

2.用Matlab实现拉格朗日及牛顿插值法。

3.用多项式插值法拟合数据。

6e9099745cfccb09a1a3889324c62139.png

实验步骤:

1.多项式的表达式,MATLAB中使用以为向量来表示多项式,将多项式的系数按照降幂次序存放在向量中。多项式P(x)的具体表示方法:

86c8a42ca64bad91a1c400c1b57eb1a8.png的系数构成向量为:

c45d9312077b99a79754aa708205b5b1.png

。示例如下:

6eddeba9b5d109e673c831ea5c39d452.png

975343320c5c41233fea5031be35179d.png

将向量表示的多项式用字符串输出的通用函数示例:

a4daddcd3b6d45a7277dac622c4c3f0a.png

例子

14ef03aff51e0a0efd0123a3bf02fae1.png运行示例:

7c6de35202102a86dfc7aab1bf1f6e2b.png

多项式的加法:

c9cef752c8185abe53ce0f8172014009.png

结果是

39e8aeabb3a521c38ce8b3890e467356.png

多项式乘法:

3ff259500f530864ed21ae9961f57cbc.png

结果是

12ce1984af18b464200de8223f48096e.png

多项式除法:

ac6db9cc1449c6892b99f5384988f7a0.png

多项式导数:

fc0f919ff60db7303f61def003558af8.png

792078cf10aa7e64d2ed5c7f321b9554.png

2.用Matlab实现拉格朗日,拉格朗日代码:

8f900a89c6347c561fdf2122f13be562.png

961ddebeb323a10fe0623af514929fc1.png

1 function yi=Lagrange(x,y,xi)

2 m=length(x);n=length(y);p=length(xi);

3 if m~=n

4 error('向量x与y的长度必须一致');

5 end

6 s=0;

7 for k=1:n

8 t=ones(1,p);

9 for j=1:n

10 if j~=k

11 t=t.*(xi-x(j))./(x(k)-x(j));

12 end

13 end

14 s=s+t.*y(k);

15 end

16 yi=s;

17 end

Lagrange

运行示例:

137fd1fe9b69ca96c9ac7d241820764b.png

555ce07c3548250d1fb26f63b131afda.png

9da96c1cf8c35c6722737acb8c11353a.png

7186dc9c37f41cf1eb1159b2cc103590.png

d6c37ac02b4f61946c0129dc77b3917d.png

96998979cfae27eca4b9e7a0a65718e3.png

牛顿插值法代码:

8f900a89c6347c561fdf2122f13be562.png

961ddebeb323a10fe0623af514929fc1.png

1 function yi=newtonint(x,y,xi)

2 m=length(x);n=length(y);

3 if m~=n

4 error('向量x与y的长度必须一致');

5 end

6 A=zeros(n);

7 A(:,1)=y;

8 for j=2:n%j为列标

9 for i=1:(n-j+1) %i为行标

10 A(i,j)=(A(i+1,j-1)-A(i,j-1))/(x(i+j-1)-x(i));%计算差商表

11 end

12 end

13 %根据差商表,求对应的牛顿插值多项式在x=xi处的值yi

14 N(1)=A(1,1);

15 for j=2:n

16 T=1;

17 for i=1:j-1

18 T=T*(xi-x(i));

19 end

20 N(j)=A(1,j)*T;

21 end

22 yi=sum(N); %将x=xi带入牛顿插值多项式,得到的yi的值

23 %A 输出差商表

24 end

newtonint

运行实例:

9d80017996ddb9105b9e9ec2b01ad8af.png

等距节点的牛顿向后插值代码:

8f900a89c6347c561fdf2122f13be562.png

961ddebeb323a10fe0623af514929fc1.png

1 function yi=newtonint1(x,y,xi)

2 h=x(2)-x(1);t=(xi-x(1))/h;

3 n=length(y);Y=zeros(n);Y(:,1)=y';

4 for k=1:n-1

5 Y(:,k+1)=[diff(y',k);zeros(k,1)];

6 end

7 yi=Y(1,1);

8 for i=1:n-1

9 z=t;

10 for k=1:i-1

11 z=z*(t-k);

12 end

13 yi=yi+Y(1,i+1)*z/prod([1:i]);

14 end

newtonint1

运行实例:

67080b8f7619b9ac57dbc60945ca64cc.png

等距节点的牛顿向前插值代码:

8f900a89c6347c561fdf2122f13be562.png

961ddebeb323a10fe0623af514929fc1.png

1 function yi=newtonint2(x,y,xi)

2 n=length(x);h=x(n)-x(n-1);t=(x(n)-xi)/h;

3 n=length(y);Y=zeros(n);Y(:,1)=y';

4 for k=1:n-1

5 Y(:,k+1)=[zeros(k,1);diff(y',k)];

6 end

7 h=x(n)-x(n-1);t=(x(n)-xi)/h;yi=Y(n,1);

8 for i=1:n-1

9 z=t;

10 for k=1:i-1

11 z=z*(t-k);

12 end

13 yi=yi+Y(n,i+1)*(-1)^i*z/prod([1:i]);

14 end

newtonint2

运行示例:

23fa2a2bd8079cef745d74864b69afbd.png

3.使用4次牛顿插值多项式插值,并作图:

20e245e5dafded156026ef61f80f86a9.png

解:由4次牛顿插值多项式,

970f774fd93c110f0be458ddcc8efee0.png

求上述多项式的系数:(修改newtonint.m代码,得到差商表),代码如下:

8f900a89c6347c561fdf2122f13be562.png

961ddebeb323a10fe0623af514929fc1.png

1 function B=newtonint4(x,y)

2 m=length(x);n=length(y);

3 if m~=n

4 error('向量x与y的长度必须一致');

5 end

6 A=zeros(n);

7 A(:,1)=y;

8 for j=2:n%j为列标

9 for i=1:(n-j+1) %i为行标

10 A(i,j)=(A(i+1,j-1)-A(i,j-1))/(x(i+j-1)-x(i));%计算差商表

11 end

12 end

13 B=A;

14 end

newtonint4

代入数据得到差商表:

0.98

-0.3

-0.625

-0.2083

-0.5208

0.92

-0.55

-0.75

-0.625

0

0.81

-0.85

-1.125

0

0

0.64

-1.3

0

0

0

0.38

0

0

0

0

已知,第一行的便是插值多项式的系数,代入插值多项式:

0cc04309e8641f79f66f89ff6e6687d6.png

并作出图像:

8f900a89c6347c561fdf2122f13be562.png

961ddebeb323a10fe0623af514929fc1.png

1 x0=[0.2 0.4 0.6 0.8 1.0];

2 y0=[0.98 0.92 0.81 0.64 0.38];

3 plot(x0,y0,'b-o')

4 hold on

5 k=0:1:10;

6 x=0.2+0.08*k;

7 for i=1:1:11

8 y(i)=0.98-0.3*(x(i)-0.2)-0.625*(x(i)-0.2)*(x(i)-0.4)-0.2083333*(x(i)-0.2)*(x(i)-0.4)*(x(i)-0.6)-0.520833333*(x(i)-0.2)*(x(i)-0.4)*(x(i)-0.6)*(x(i)-0.8);

9 end

10 plot(x,y,'r-o');

11 legend('原图像','4次插值图像');

plot3

7d4e8894f6b4d9826e6037179865d9a1.png

小结:

在编写牛顿插值的代码时,我遇到了超出元组索引的问题。我在MATLAB的提示下(它的提示是英语),如图:

613b79bdde290c5a597bb476502f58ed.png

这个f是使用迭代来求差商的,但是出现了问题。我根据它的提示创建了一个全零数组用于存储运算得到的差商,在某种程度上解决了这个问题。

在解决第3题时,我特意编写了一个算差商的程序和一个4次牛顿插值多项式代入数据画图的程序。差商的程序是修改第2题的牛顿插值程序得到的,这在一定程度上说明,一个程序的功能是可以分开的同时也可以写在一起的。但在写4次多项式代入画图的程序时,并没有参考的我,只能回看书本关于4次牛顿插值的知识,我得到了这个牛顿插值多项式的公式,并发现它的关键就是每一项的系数,而那些系数就是算得的差商,所以,很快,我就写出了4次多项式代入画图的程序。很开心的是,算得的多项式拟合得很好。

标签:yi,xi,end,插值法,多项式,牛顿,插值,Matlab

来源: https://www.cnblogs.com/jianle23/p/12817734.html

这篇关于Matlab解决简单4次牛顿差值,Matlab插值法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/625459

相关文章

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

在Ubuntu上打不开GitHub的完整解决方法

《在Ubuntu上打不开GitHub的完整解决方法》当你满心欢喜打开Ubuntu准备推送代码时,突然发现终端里的gitpush卡成狗,浏览器里的GitHub页面直接变成Whoathere!警告页面... 目录一、那些年我们遇到的"红色惊叹号"二、三大症状快速诊断症状1:浏览器直接无法访问症状2:终端操作异常

mybatis直接执行完整sql及踩坑解决

《mybatis直接执行完整sql及踩坑解决》MyBatis可通过select标签执行动态SQL,DQL用ListLinkedHashMap接收结果,DML用int处理,注意防御SQL注入,优先使用#... 目录myBATiFBNZQs直接执行完整sql及踩坑select语句采用count、insert、u

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Python实现简单封装网络请求的示例详解

《Python实现简单封装网络请求的示例详解》这篇文章主要为大家详细介绍了Python实现简单封装网络请求的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录安装依赖核心功能说明1. 类与方法概览2.NetHelper类初始化参数3.ApiResponse类属性与方法使用实

Java中字符编码问题的解决方法详解

《Java中字符编码问题的解决方法详解》在日常Java开发中,字符编码问题是一个非常常见却又特别容易踩坑的地方,这篇文章就带你一步一步看清楚字符编码的来龙去脉,并结合可运行的代码,看看如何在Java项... 目录前言背景:为什么会出现编码问题常见场景分析控制台输出乱码文件读写乱码数据库存取乱码解决方案统一使