蒙德卡罗方法python ---小白的整理

2024-01-20 06:18

本文主要是介绍蒙德卡罗方法python ---小白的整理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

                      **蒙特卡罗方法python**

蒙德卡罗方法是一种通过概率来得到近似解的方法

一 .蒙德卡罗方法来计算圆周率

1.算法思路解释如下:

  1. 圆形面积和正方形面积比例*4即等于圆周率
  2. 假设有一块边长为2的正方形木板,上面画一个单位圆,随意往木板上扔飞镖,落点(x,y)必定在木板上。
  3. 在扔得足够多的情况下,落在单位圆和落在木板上飞镖的次数的比例就等于单位圆和木板的面积之比。综上我们很容易理解随着投掷次数的增加,这个数值*4会无线接近于圆周率。

根据算法原理,我们使用pycharm编写程序利用蒙德卡罗方法来计算圆周率
参考代码块如下

from random import randomtimes =int(input('请输入投掷飞镖次数:'))
hits = 0
for i in range(times):x = random()y = random()if x*x + y*y<= 1:hits += 1
print(4.0 *hits/times)

由于我是新手,下面便是我对代码块的逐条解析

  • from random import random从random库中引入random模块,random模块时python自带的模块,用于生成随机数
  • times =int(input('请输入投掷飞镖次数:'))int()函数用于将一个字符串或数字转换成整型

#默认返回0,如果没有参数传递
int()
0
#如果转换的是float函数,那么转换的结果是向0的方向靠近,而不是四舍五入
int(3.6)
3
#负数取大
int(-3.6)
-3
#如果指定了base参数,那么第一个参数必须是字符类型
int(‘11’,base=2)
3 base=2为 二进制
#如果不指定,则认为字符是十进制数据
int(‘101’)
101

2我们进一步使用matplotlib画图

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Circle# 投点次数
n = int(input('请输入投点次数:'))
# 在正方形区域内随机投点,均匀分布
x = np.random.uniform(-1, 1, n)
y = np.random.uniform(-1, 1, n)
# 计算 点到圆心的距离
d = np.sqrt(x**2 + y**2)
# 统计 落在圆内的点的数目
hits = sum(np.where(d < 1, 1, 0))
# 计算 pi 的近似值(蒙特卡罗方法:用概率统计值去近似真实值)
pi = 4 * hits / n
print('圆周率: ', pi)"""
画图
"""
#变量fig表示整张图片,ax表示图片中的各个图表
#创建自定义图像
fig = plt.figure()
# 其中,参数111的意思是:将画布分割成1行1列,图像画在从左到右从上到下的第1块
ax = fig.add_subplot(111)
ax.plot(x, y,'ro',markersize = 1)
plt.axis('equal') # 防止图像变形
circle = Circle(xy=(0,0), radius=1, alpha=0.5)
ax.add_patch(circle)
plt.show()

在这里插入图片描述
在这里插入图片描述

二.使用蒙特卡罗计算定积分

  • 求函数 y=x^2 在[0,1]内的定积分
import numpy as np
import matplotlib.pyplot as pltdef f(x):return x**2
# 投点次数
n = int(input('任意输入投点次数:'))
# 在矩形区域内随机投点
x = np.random.uniform(0, 1, n)
y = np.random.uniform(0, 1, n)
# 统计落在函数 y=x^2图像下方的点的数目
hits = sum(np.where(y < f(x), 1, 0))
# 计算定积分的近似值(蒙特卡罗方法:用统计的概率比值去近似真实值)
integral = hits / n
print('x^2在[0,1]的定积分: ', integral)
"""
画图
"""
fig = plt.figure()
axes = fig.add_subplot(111)
axes.plot(x, y,'ro',markersize = 1)
# 防止图像变形
plt.axis('equal')
axes.plot(np.linspace(0, 1, 10), f(np.linspace(0, 1, 10)), 'b-')
plt.show()

在这里插入图片描述
在这里插入图片描述

这篇关于蒙德卡罗方法python ---小白的整理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/625051

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Linux云服务器手动配置DNS的方法步骤

《Linux云服务器手动配置DNS的方法步骤》在Linux云服务器上手动配置DNS(域名系统)是确保服务器能够正常解析域名的重要步骤,以下是详细的配置方法,包括系统文件的修改和常见问题的解决方案,需要... 目录1. 为什么需要手动配置 DNS?2. 手动配置 DNS 的方法方法 1:修改 /etc/res

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

JavaScript对象转数组的三种方法实现

《JavaScript对象转数组的三种方法实现》本文介绍了在JavaScript中将对象转换为数组的三种实用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录方法1:使用Object.keys()和Array.map()方法2:使用Object.entr