hanlp,pkuseg,jieba,cutword分词实践

2024-01-19 23:04

本文主要是介绍hanlp,pkuseg,jieba,cutword分词实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

总结:只有jieba,cutword,baidu lac成功将色盲色弱成功分对,这两个库字典应该是最全的

hanlp[持续更新中]

https://github.com/hankcs/HanLP/blob/doc-zh/plugins/hanlp_demo/hanlp_demo/zh/tok_stl.ipynb

import hanlp
# hanlp.pretrained.tok.ALL # 语种见名称最后一个字段或相应语料库tok = hanlp.load(hanlp.pretrained.tok.COARSE_ELECTRA_SMALL_ZH)
# coarse和fine模型训练自9970万字的大型综合语料库,覆盖新闻、社交媒体、金融、法律等多个领域,是已知范围内全世界最大的中文分词语料库# tok.dict_combine = './data/dict.txt'
print(tok(['身高1.60米以上,无色盲色弱具体要求见我校招生章程']))

在这里插入图片描述

pkuseg[不再维护了]

https://github.com/lancopku/pkuseg-python

下载最新模型
在这里插入图片描述

import pkuseg
c = pkuseg.pkuseg(model_name=r'C:\Users\ymzy\.pkuseg\default_v2') #指定模型路径加载,如果只写模型名称,会报错[Errno 2] No such file or directory: 'default_v2\\unigram_word.txt'
# c = pkuseg.pkuseg(user_dict=dict_path,model_name=r'C:\Users\ymzy\.pkuseg\default_v2') #, postag = True
print(c.cut('身高1.60米以上,无色盲色弱具体要求见我校招生章程'))

在这里插入图片描述

jieba[不再维护了]

https://github.com/fxsjy/jieba
在这里插入图片描述
在这里插入图片描述
HMM中文分词原理

import jieba# jieba.load_userdict(file_name)
sentence = '身高1.60米以上,无色盲色弱具体要求见我校招生章程'
#jieba分词有三种不同的分词模式:精确模式、全模式和搜索引擎模式:
seg_list = jieba.cut(sentence, cut_all=True) #全模式
print("Full Mode:" + "/".join(seg_list))
seg_list = jieba.cut(sentence, cut_all=False) #精确模式
print("Default Mode:" + "/".join(seg_list))
seg_list = jieba.cut(sentence, HMM=False) #不使用HMM模型
print("/".join(seg_list))
seg_list = jieba.cut(sentence, HMM=True) #使用HMM模型
print("/".join(seg_list))

在这里插入图片描述

cutword[202401最新]

https://github.com/liwenju0/cutword
在这里插入图片描述

from  cutword import Cuttercutter = Cutter(want_long_word=True)
res = cutter.cutword("身高1.60米以上,无色盲色弱具体要求见我校招生章程")
print(res)

在这里插入图片描述

lac【不再维护】

https://github.com/baidu/lac
在这里插入图片描述

from LAC import LAC# 装载分词模型
seg_lac = LAC(mode='seg')
seg_lac.load_customization('./dictionary/dict.txt', sep=None)texts = [u"身高1.60米以上,无色盲色弱具体要求见我校招生章程"]
seg_result = seg_lac.run(texts)
print(seg_result)

在这里插入图片描述

这篇关于hanlp,pkuseg,jieba,cutword分词实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/623994

相关文章

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用

破茧 JDBC:MyBatis 在 Spring Boot 中的轻量实践指南

《破茧JDBC:MyBatis在SpringBoot中的轻量实践指南》MyBatis是持久层框架,简化JDBC开发,通过接口+XML/注解实现数据访问,动态代理生成实现类,支持增删改查及参数... 目录一、什么是 MyBATis二、 MyBatis 入门2.1、创建项目2.2、配置数据库连接字符串2.3、入

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

在Java中使用OpenCV实践

《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测

MyBatis-Plus 自动赋值实体字段最佳实践指南

《MyBatis-Plus自动赋值实体字段最佳实践指南》MyBatis-Plus通过@TableField注解与填充策略,实现时间戳、用户信息、逻辑删除等字段的自动填充,减少手动赋值,提升开发效率与... 目录1. MyBATis-Plus 自动赋值概述1.1 适用场景1.2 自动填充的原理1.3 填充策略

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

虚拟机Centos7安装MySQL数据库实践

《虚拟机Centos7安装MySQL数据库实践》用户分享在虚拟机安装MySQL的全过程及常见问题解决方案,包括处理GPG密钥、修改密码策略、配置远程访问权限及防火墙设置,最终通过关闭防火墙和停止Net... 目录安装mysql数据库下载wget命令下载MySQL安装包安装MySQL安装MySQL服务安装完成

SpringBoot整合(ES)ElasticSearch7.8实践

《SpringBoot整合(ES)ElasticSearch7.8实践》本文详细介绍了SpringBoot整合ElasticSearch7.8的教程,涵盖依赖添加、客户端初始化、索引创建与获取、批量插... 目录SpringBoot整合ElasticSearch7.8添加依赖初始化创建SpringBoot项