贝塞尔曲线(Bezier Curve)原理、公式推导及matlab代码实现

本文主要是介绍贝塞尔曲线(Bezier Curve)原理、公式推导及matlab代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

参考链接

定义

直观理解

 公式推导

一次贝塞尔曲线(线性公式)

二次贝塞尔曲线(二次方公式)

 三次贝塞尔曲线(三次方公式)

n次贝塞尔曲线(一般参数公式)

代码实现


参考链接

贝塞尔曲线(Bezier Curve)原理及公式推导_bezier曲线-CSDN博客

贝塞尔曲线(Bezier Curve)原理、公式推导及matlab代码实现-CSDN博客

贝塞尔曲线——这个是可以在线控制点来绘制贝塞尔曲线的网站

定义

贝塞尔曲线用于计算机图形绘制形状,CSS 动画和许多其他地方。

贝塞尔曲线(Bezier curve),又称贝兹曲线或贝济埃曲线,是应用于二维图形应用程序的数学曲线。一般的矢量图形软件通过它来精确画出曲线,贝兹曲线定义:起始点、终止点(也称锚点)、控制点。通过调整控制点,贝塞尔曲线的形状会发生变化。 贝塞尔曲线是计算机图形学中相当重要的参数曲线,在一些比较成熟的位图软件中也有贝塞尔曲线工具,如PhotoShop等。

1962年,法国数学家Pierre Bézier第一个研究了这种矢量绘制曲线的方法,并给出了详细的计算公式,因此按照这样的公式绘制出来的曲线就用他的姓氏来命名,称为贝塞尔曲线。

贝塞尔曲线的一些特性:

  • 使用n个控制点\{P_1,P_2,\cdots ,P_n\}来控制曲线的形状
  • 曲线通过起始点P_1 和终止点P_n,接近但不通过中间点P_2\sim P_{n-1}
  • 曲线的阶次等于控制点的数量减一。 对于两个点我们能得到一条线性曲线(直线),三个点 — 一条二阶曲线,四个点 — 一条三阶曲线。

  • 曲线总是在控制点的凸包内部

由于最后一个属性,在计算机图形学中,可以优化相交测试。如果凸包不相交,则曲线也不相交。因此,首先检查凸包的交叉点可以非常快地给出“无交叉”结果。检查交叉区域或凸包更容易,因为它们是矩形,三角形等(见上图),比曲线简单的多。

直观理解

Step 1. 在二维平面内选三个不同的点并依次用线段连接

Step 2. 在线段ABBC上找到DE两点,使得\frac{AD}{DB}=\frac{BE}{EC}

 Step 3. 连接DE,并在DE上找到F点,使其满足\frac{DE}{FE}=\frac{AD}{DB}=\frac{BE}{EC}(抛物线的三切线定理)

Step 4. 找出符合上述条件的所有点

 上述为一个二阶贝塞尔曲线。同样的有n阶贝塞尔曲线:

曲线图示
一阶

二阶

三阶

四阶

五阶

 公式推导

一次贝塞尔曲线(线性公式)

定义:给定点P_0P_1,线性贝塞尔曲线只是一条两点之间的直线,这条线由下式给出,且其等同于线性插值:

B(t)=P_0+(P_0-P_1)t=(1-t)P_0+tP_1,t\in [0,1]

其中,公式里的P_0P_1同步表示为其xy轴坐标。

假设P_0坐标为(a.b)P_1坐标为(c,d)P_2坐标为(x,y),则有:

 \frac{x-a}{c-x}=\frac{t}{1-t}\Rightarrow x=(1-t)a+tc

同理有:

\frac{y-b}{d-y}=\frac{t}{1-t}\Rightarrow y=(1-t)b+td

于是可将上式简写为:


B(t)=(1-t)P_0+tP_1,t\in [0,1]

二次贝塞尔曲线(二次方公式)

定义:二次贝塞尔曲线的路径由给定点P_0P_1P_2的函数B(t)给出:

B(t)=(1-t)^2P_0+2t(1-t)P_1+t^2P_2,t\in [0,1]

 假设P_0P_1上的点为AP_1P_2上的点为BAB上的点为C(也即C为曲线上的点。则根据一次贝塞尔曲线公式有:

A=(1-t)P_0+tP_1

B=(1-t)P_1+tP_2

C=(1-t)A+tB

将上式中AB带入C中,即可得到二次贝塞尔曲线的公式:


B(t)=(1-t)^2P_0+2t(1-t)P_1+t^2P_2,t\in [0,1]

 三次贝塞尔曲线(三次方公式)

同理可得三次贝塞尔曲线公式:

B(t)=(1-t)^3P_0+3t(1-t)^2P_1+3t^2(1-t)P_2+t^3P_3,t\in [0,1]

n次贝塞尔曲线(一般参数公式)

定义:给定点P_0P_1\cdots ,P_n,则n次贝塞尔曲线由下式给出:

n次贝塞尔曲线的公式可由如下递归表达:

 \mathrm{P}_{0}^{\mathrm{n}}=(1-\mathrm{t}) \mathrm{P}_{0}^{\mathrm{n}-1}+\mathrm{tP}_{1}^{\mathrm{n}-1}, \mathrm{t} \in[0,1]

进一步可以得到贝塞尔曲线的递推计算公式:

\mathrm{P}_{\mathrm{i}}^{\mathrm{k}}\left\{\begin{array}{l} \mathrm{P}_{\mathrm{i}}, \mathrm{k}=0 \\ (1-\mathrm{t}) \mathrm{P}_{\mathrm{i}}^{\mathrm{k}-1}+\mathrm{tP}_{\mathrm{i}+1}^{\mathrm{k}-1}, \mathrm{k}=1,2, \ldots, \mathrm{n} ; \mathrm{i}=0,1, \ldots, \mathrm{n}-\mathrm{k} \end{array}\right.

代码实现

首先来看不同阶数的贝塞尔曲线公式,来找共同点:

N=2:         B(t)=(1-t)P_0+tP_1,t\in [0,1]

N=3:         B(t)=(1-t)^2P_0+2t(1-t)P_1+t^2P_2,t\in [0,1]

N=4:        B(t)=(1-t)^3P_0+3t(1-t)^2P_1+3t^2(1-t)P_2+t^3P_3,t\in [0,1]

可将贝塞尔曲线一般参数公式中的表达式用如下方式表示:
设有常数 a,b 和 c,则该表达式可统一表示为如下形式:

a(1-t)^bt^cP_n

根据上面的分析就可以总结出 a,b,c 对应的取值规则:

b: (N - 1)递减到 0 (b 为 1-t 的幂)
c: 0 递增到 (N - 1) (c 为 t 的幂)
a: 在 N 分别为 1,2,3,4,5 时将其值用如下形式表示: 

N=1:---------1
N=2:--------1 1
N=3:------1 2 1
N=4:-----1 3 3 1
N=5:---1 4 6 4 1
a 值的改变规则为: 杨辉三角

-------------------------------------------------------------------

理论基础有了,开始写代码

a 值用杨辉三角计算,b ,c 值在for 循环里计算,P_n从传入的点坐标读取。

step1:首先使用杨辉三角的方式生成a值
 

    N = len(control_points)ta = np.zeros((N, N))# 初始化杨辉三角左右两边的值为1for i in range(N):ta[i, 0] = 1ta[i, i] = 1# 计算杨辉三角for row in range(2, N):for col in range(1, row):ta[row, col] = ta[row-1, col-1] + ta[row-1, col]

step2:生成贝塞尔曲线上的点

    p = np.zeros((M, 2))for i in range(M):t = i / M  # 确定每一个点的比例for k in range(N):c = k  # 分别确定 a, b, c 三个系数b = N - c - 1  # 分别确定 a, b, c 三个系数a = ta[N-1, k]  # 分别确定 a, b, c 三个系数# 确定点的 x 和 y 坐标p[i, 0] += a * (1 - t)**b * t**c * control_points[k, 0]p[i, 1] += a * (1 - t)**b * t**c * control_points[k, 1]

完整代码


# N表示控制点个数,M表示时间步
import numpy as np
from scipy.special import combdef calculate_bezier_curve(control_points, M=1000):N = len(control_points)ta = np.zeros((N, N))# 初始化杨辉三角左右两边的值为1for i in range(N):ta[i, 0] = 1ta[i, i] = 1# 计算杨辉三角for row in range(2, N):for col in range(1, row):ta[row, col] = ta[row-1, col-1] + ta[row-1, col]p = np.zeros((M, 2))for i in range(M):t = i / M  # 确定每一个点的比例for k in range(N):c = k  # 分别确定 a, b, c 三个系数b = N - c - 1  # 分别确定 a, b, c 三个系数a = ta[N-1, k]  # 分别确定 a, b, c 三个系数# 确定点的 x 和 y 坐标p[i, 0] += a * (1 - t)**b * t**c * control_points[k, 0]p[i, 1] += a * (1 - t)**b * t**c * control_points[k, 1]return p# 示例调用
control_points = np.array([(0, 0), (1, 2), (2, 0)])
result_points = calculate_bezier_curve(control_points)# 打印结果
print(result_points)# 可视化
import matplotlib.pyplot as plt
plt.figure(figsize=(12, 6))
plt.plot(result_points[:, 0], result_points[:, 1], label='Bezier Curve')

下图是一个生成的二阶贝塞尔曲线(有3个控制点)

 另外一种实现方式:

def bezier_curve(points, n_times=1000):"""Generate a Bezier curve from control points.Args:points (list of tuples): control points.n_times (int): number of time steps (resolution of the curve).Returns:list of tuples: points on the bezier curve."""n_points = len(points)t = np.linspace(0, 1, n_times)curve = np.zeros((n_times, 2))for i in range(n_points):binom = comb(n_points - 1, i) # 计算二项式系数,即组合数。表示从 n_points - 1 个元素中选择 i 个元素的方式有多少种。curve += np.outer(binom * (t ** i) * ((1 - t) ** (n_points - 1 - i)), points[i])return curvecontrol_points1 = [(0, 0), (1, 2), (2, 0)]
bezier1 = bezier_curve(control_points1)
print(bezier1)

这篇关于贝塞尔曲线(Bezier Curve)原理、公式推导及matlab代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/623549

相关文章

Spring Boot整合Redis注解实现增删改查功能(Redis注解使用)

《SpringBoot整合Redis注解实现增删改查功能(Redis注解使用)》文章介绍了如何使用SpringBoot整合Redis注解实现增删改查功能,包括配置、实体类、Repository、Se... 目录配置Redis连接定义实体类创建Repository接口增删改查操作示例插入数据查询数据删除数据更

Java Lettuce 客户端入门到生产的实现步骤

《JavaLettuce客户端入门到生产的实现步骤》本文主要介绍了JavaLettuce客户端入门到生产的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录1 安装依赖MavenGradle2 最小化连接示例3 核心特性速览4 生产环境配置建议5 常见问题

linux ssh如何实现增加访问端口

《linuxssh如何实现增加访问端口》Linux中SSH默认使用22端口,为了增强安全性或满足特定需求,可以通过修改SSH配置来增加或更改SSH访问端口,具体步骤包括修改SSH配置文件、增加或修改... 目录1. 修改 SSH 配置文件2. 增加或修改端口3. 保存并退出编辑器4. 更新防火墙规则使用uf

Java 的ArrayList集合底层实现与最佳实践

《Java的ArrayList集合底层实现与最佳实践》本文主要介绍了Java的ArrayList集合类的核心概念、底层实现、关键成员变量、初始化机制、容量演变、扩容机制、性能分析、核心方法源码解析、... 目录1. 核心概念与底层实现1.1 ArrayList 的本质1.1.1 底层数据结构JDK 1.7

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node