基于 Flink 的实时数仓在曹操出行运营中的应用

2024-01-19 19:36

本文主要是介绍基于 Flink 的实时数仓在曹操出行运营中的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文整理自曹操出行基础研发部负责人史何富,在 Flink Forward Asia 2023 主会场的分享。本次分享将为大家介绍实时数仓在曹操出行(互联网网约车出行企业)的实时数仓应用场景,以及通过离线场景向实时场景下加速升级而获得的业务价值。内容主要分为以下六部分:

  1. 业务简介
  2. 实时数仓解决业务痛点
  3. 曹操出行实时数仓
  4. 运营落地及收益
  5. 未来规划
  6. 用户对话环节

一、业务简介

曹操出行创立于 2015 年 5 月 21 日,是吉利控股集团布局「新能源汽车共享生态」的战略性投资业务,以「科技重塑绿色共享出行」为使命,将全球领先的互联网、车联网、自动驾驶技术以及新能源科技创新应用于共享出行领域,以「用心服务国民出行」为品牌主张,致力于打造服务口碑最好的出行品牌。

曹操出行目前为止已经在全国 62 个城市落地运营,投放了超过 10 万辆新能源纯电车,累计注册司机超过 350 万,服务乘客超过 1.5 亿。另外一块非常重要的业务是企业用户,目前为止服务企业用户超过 1500 万家。

二、实时数仓解决业务痛点

介绍三类主要的实时数据相关需求。

  1. 首先是管理层, 管理者需要随时随地看到公司运营状况,从概念性数据到每个城市不同维度的实时数据,需要一个方便使用的掌上工具随时发现运营中的问题,能够快速定位到什么环节出现了问题,同时也可以发现一些潜在的业务机会。

  2. 第二是一线运营,团队在每个城市或者总部的运营官需要一个能够聚焦自己负责范围的工具。

  3. 第三是算法团队,互联网的出行业务与过去不同,它不是一个放养的简单模式,把车放在路上去跑,乘客打车,就实时把乘客和司机按照最短距离进行匹配。现在团队有自己的交易引擎和调度引擎,这些都是依赖于实时数据的,数据越新鲜算法效果越好。

三、曹操出行实时数仓

团队设计的实时数仓层次主要讲三点,对应三类需求。通过 Flink 一整套实时计算引擎产生团队指标体系,OLAP 引擎将数据做实时分析给运营人员,把实时数据反馈给算法模型从而更好地进行决策。数据来自不同数据源,手机端 APP 包括乘客端和车机端,车机的数据会实时流到团队后台 Flink,业务日志通过消息队列到 Flink 的集群,最后生成数据到 OLAP 引擎、数据库等。

四、运营落地及收益

介绍一些基于实时数据开发的数据产品。

  1. 观星台:

    团队开发了一个叫做观星台的掌上工具,基本上包含了全公司实时和历史的各维度运营数据,包括目前乘客的需求、毛利达成情况、补贴发放、甚至哪个区域的需求比较多等。

  2. 天机镜:

    针对运营类团队做的一个基于时空可视化的运营工具。团队人员及城市负责人可以随时随地查看当前负责城市任何区域的运营状况。把一个城市在 H3 网格分割成很多角度,每个 H3 网格都有自己的运营状态,包括目前里面有多少车或是未来 10 分钟、20 分钟后会有多少车。甚至也做了一些预测的功能衡量需求是否溢出,可以回放整个需求和运力供需关系的变化。因为有时候不可能一天 24 小时每时每刻都盯着盘,工具可以设定一些告警的策略以便团队的使用。这些策略都可以主动感知异常,然后通过各种方式,比如钉钉短信甚至电话通知到用户,目前他所负责的区域或城市有哪些需要关注的变化。

  3. 实时看板:

    CBD看板, C 指的是团队的乘客,B 指的是司机,D 指的是城市区域。包括给到团队一线运营人员的数据产品和工具,以便更好地做出人工决策,采取干预措施。

  4. 算法:
    实时数据很好地反哺了团队的算法模块,因为目前整个交易引擎和调度引擎不再像以前那么简单直接,已经全部算法化。比如从一个学校出发,可能分配直线距离最近的一辆空闲车辆。这种派单模式效率非常低,已经不能适应现在网约车的业务状态。当前,团队需要用算法的角色,比如需要根据乘客的对车型的需求和目的地;以及司机的荣耀分,是否疲劳,是否开启回家模式;出发地和目的地的供需状况等多重特征,纳入算法决策的考量。团队需要非常新鲜的数据给到算法团队,才能使整个交易的收益,包括平台和司机,达到最优。通过实时的基于 Flink 一整套流计算,再产生各类指标、实时特征给到团队算法引擎。网约车行业不可能再像过去一样不考虑运营成本给乘客、司机大量发补贴。团队需要想尽办法提升运营的效率,做到不伤害任何一方,当然也能够保证平台健康运营。

五、未来规划

未来规划在云原生云 Flink 上做一些尝试。目前自建的 Flink 集群大概有 2000 核,每天有 500 多亿消息。团队期待上云之后可以降低应用成本,各方面的弹性会更好。因为网约车有非常强的潮汐效应,一天 24 小时需求的波动都会非常大。团队如果还采用传统的专属 Flink 集群成本会比较高,所以要充分利用云的弹性来进一步降低成本。

在算法实时指标方面,团队正在探索更多场景,将生产更多的实时特征给到算法引擎。举个例子,比如说目前算法决策是目标最优,未来肯定要做到多目标的动态最优。目标的最优是团队选择一个城市,比如杭州,设定 xx 业务目标,我们的交易撮合和补贴都能够通过算法来进行,不需要人工干预;达成设定目标的同时,追求全天实付 GTV 的最大化。

六、用户对话环节

■ 对话嘉宾

王 峰|阿里云智能开源大数据平台负责人

史何富|曹操出行基础研发部负责人

双方基于曹操出行如何利用开源 Flink 的技术赋能业务、实时化升级大数据等问题进行了探讨。

史何富老师表示团队只有实时才能提升效率,如果团队在实时方面投入带来的价值增量超过团队在基础设施方面的增量,实时就是值得做的,而且曹操在过去两年也确实证明实时是有价值与效果的,让团队看到了如何通过实时化的数据分析对业务产生更大的收益等。此外,曹操出行的数据分析架构也在做 lakehouse 选型,数据湖是一个比较明确的趋势,团队也会继续探索。

【用户对话环节 - 视频回放】

https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/443159041360.mp4

这篇关于基于 Flink 的实时数仓在曹操出行运营中的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/623457

相关文章

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Python中yield的用法和实际应用示例

《Python中yield的用法和实际应用示例》在Python中,yield关键字主要用于生成器函数(generatorfunctions)中,其目的是使函数能够像迭代器一样工作,即可以被遍历,但不会... 目录python中yield的用法详解一、引言二、yield的基本用法1、yield与生成器2、yi

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

Java Stream 的 Collectors.toMap高级应用与最佳实践

《JavaStream的Collectors.toMap高级应用与最佳实践》文章讲解JavaStreamAPI中Collectors.toMap的使用,涵盖基础语法、键冲突处理、自定义Map... 目录一、基础用法回顾二、处理键冲突三、自定义 Map 实现类型四、处理 null 值五、复杂值类型转换六、处理

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布