最大似然估计(Maximum Likelihood Estimation) - 机器学习基础

本文主要是介绍最大似然估计(Maximum Likelihood Estimation) - 机器学习基础,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

内容总结自自花书《deep learning》Chapter 5.5,由英文版翻译而来。英文版官网可以免费查阅:http://www.deeplearningbook.org/

估计器(estimators)从何而来?相较于猜测某个函数可能产生一个好的估计器,然后再分析其偏差和方差,我们更愿意拥有一些原则,可以用来推导针对不同模型的好的估计器的特定函数。

最常用的这种原则就是最大似然原则(maximum likelihood principle)。
在这里插入图片描述在这里插入图片描述
一种对最大似然估计的解释是将其看做是对模型的分布和训练集所定义的实验分布 p ^ d a t a \hat{p}_{data} p^data的差异的最小化。差异的程度使用Kl散度来衡量。
在这里插入图片描述
最小化KL散度恰恰对应于最小化分布之间的交叉熵。很多作者会对伯努利分布和softmax分布的负log似然使用交叉熵这个术语,这实际上是错误使用。任何包含负log似然的loss函数都是训练集定义的实验分布和模型定义的概率分布的交叉熵。例如,MSE是实验分布和高斯模型的交叉熵(原书前面有详细推导过程,证明了最小化高斯模型的交叉熵和最小化MSE是一致的,5.5.1也有一个类型的推导过程。)。

这样我就得到了不管是最大化似然还是最小化KL散度都是在得到最优的 θ \pmb{\theta} θθθ。最大似然这样就变成了最小化负log似然(NLL),或者等价的,交叉熵的最小化。把最大似然看作是KL散度的最小化是非常有帮助的,因为KL散度有一个已知的最小值0,而负log似然实际上在 x \pmb{x} xxx是实数值时可以是负的。

最大似然的性质

最大似然主要的吸引力在于它可以被证明是最好的估计器逼近,当样本数量m趋近于无穷时,它收敛的比率随着m增大而增大。

在以下两个条件下,最大似然估计器具有一致性(consistency)的性质:
在这里插入图片描述
然而,具备一致性的估计器在统计效率(statistical efficiency)上可以是不同的,这意味着一个一致估计器在固定数量上的m样本上可以取得低泛化误差(generalizarion error),或者等价地说,只需要更少的样本就足以取得固定水平的泛化误差。

统计效率通常在在有参(parametric case)情况下被研究。

Cramér-Rao lower bound (Rao, 1945; Cramér, 1946)证明了没有其他的一致性估计器能比最大似然估计器取得更低的MSE。

因为一致性和高效性,最大似然通常是使用机器学习的首选估计器。当样本数量足够小以至于会产生过拟合时,可以采用诸如权重衰减等正则策略来得到一个具有更小方差的最大似然的有偏版本,尤其是在训练数据受限时。

这篇关于最大似然估计(Maximum Likelihood Estimation) - 机器学习基础的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/623299

相关文章

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

MySQL数据类型与表操作全指南( 从基础到高级实践)

《MySQL数据类型与表操作全指南(从基础到高级实践)》本文详解MySQL数据类型分类(数值、日期/时间、字符串)及表操作(创建、修改、维护),涵盖优化技巧如数据类型选择、备份、分区,强调规范设计与... 目录mysql数据类型详解数值类型日期时间类型字符串类型表操作全解析创建表修改表结构添加列修改列删除列

Python 函数详解:从基础语法到高级使用技巧

《Python函数详解:从基础语法到高级使用技巧》本文基于实例代码,全面讲解Python函数的定义、参数传递、变量作用域及类型标注等知识点,帮助初学者快速掌握函数的使用技巧,感兴趣的朋友跟随小编一起... 目录一、函数的基本概念与作用二、函数的定义与调用1. 无参函数2. 带参函数3. 带返回值的函数4.

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和