openpose之使用摄像头检测并输出到json文件

2024-01-19 14:36

本文主要是介绍openpose之使用摄像头检测并输出到json文件,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

编程如画,我是panda!


前言

之前给大家分享了如何搭建openpose环境,并进行了测试案例,但是如果要使用摄像头的话,还需要修改一下运行文件,并且这次会教大家如何输出到json文件 。

如果环境还没有搭建好,请参见我的博客:openpose环境搭建

一、了解输出格式

输出:

如果你使用一张图片进行测试,会得到一个n*25*3的矩阵, n代表检测到了几个人,25代表25个节点,3代表了(x坐标,y坐标,置信度)。

25个节点分别为:

// const std::map<unsigned int, std::string> POSE_BODY_25_BODY_PARTS {
//     {0,  "Nose"},
//     {1,  "Neck"},
//     {2,  "RShoulder"},
//     {3,  "RElbow"},
//     {4,  "RWrist"},
//     {5,  "LShoulder"},
//     {6,  "LElbow"},
//     {7,  "LWrist"},
//     {8,  "MidHip"},
//     {9,  "RHip"},
//     {10, "RKnee"},
//     {11, "RAnkle"},
//     {12, "LHip"},
//     {13, "LKnee"},
//     {14, "LAnkle"},
//     {15, "REye"},
//     {16, "LEye"},
//     {17, "REar"},
//     {18, "LEar"},
//     {19, "LBigToe"},
//     {20, "LSmallToe"},
//     {21, "LHeel"},
//     {22, "RBigToe"},
//     {23, "RSmallToe"},
//     {24, "RHeel"},
//     {25, "Background"}
// };

二、使用摄像头

openpose中有很多参数,可以使用参数来控制是否使用摄像头:

import os
import sys
import cv2
from sys import platform
import argparse
import numpy as npdir_path = os.path.dirname(os.path.realpath(__file__))
sys.path.append(dir_path)
os.environ['PATH'] = os.environ['PATH'] + ';' + dir_path + '/bin;'
import pyopenpose as opprint(op)
print("成功引入pyopenpose")parser = argparse.ArgumentParser()
parser.add_argument("--camera", default=0, help="Camera index for capturing video. Default is 0.")
args = parser.parse_known_args()# Custom Params
params = dict()
params["model_folder"] = "models/"
params["net_resolution"] = "368x256"# Starting OpenPose
opWrapper = op.WrapperPython()
opWrapper.configure(params)
opWrapper.start()# Start capturing from the camera
cap = cv2.VideoCapture(int(args[0].camera))while True:# Read a frame from the cameraret, frame = cap.read()if not ret:break# Process the framedatum = op.Datum()datum.cvInputData = frameopWrapper.emplaceAndPop(op.VectorDatum([datum]))# Display the resultprint("Body keypoints: \n" + str(datum.poseKeypoints))cv2.imshow("OpenPose 1.7.0 - Tutorial Python API", datum.cvOutputData)# Break the loop when 'q' is pressedif cv2.waitKey(1) & 0xFF == ord('q'):break# Release resources
cap.release()
cv2.destroyAllWindows()
opWrapper.stop()

如果你想输出到json文件,可以设置参数:

params["write_json"] = "json_output/"  # 指定保存 JSON 文件的目录

完整代码如下:

import os
import sys
import cv2
from sys import platform
import argparse
import json  # 添加 json 模块dir_path = os.path.dirname(os.path.realpath(__file__))
sys.path.append(dir_path)
os.environ['PATH'] = os.environ['PATH'] + ';' + dir_path + '/bin;'
import pyopenpose as opprint(op)
print("成功引入pyopenpose")parser = argparse.ArgumentParser()
parser.add_argument("--camera", default=0, help="Camera index for capturing video. Default is 0.")
args = parser.parse_known_args()# Custom Params
params = dict()
params["model_folder"] = "models/"
params["net_resolution"] = "368x256"
params["write_json"] = "json_output/"  # 指定保存 JSON 文件的目录# Starting OpenPose
opWrapper = op.WrapperPython()
opWrapper.configure(params)
opWrapper.start()# Start capturing from the camera
cap = cv2.VideoCapture(int(args[0].camera))while True:# Read a frame from the cameraret, frame = cap.read()if not ret:break# Process the framedatum = op.Datum()datum.cvInputData = frameopWrapper.emplaceAndPop(op.VectorDatum([datum]))# Display the resultprint("Body keypoints: \n" + str(datum.poseKeypoints))# Check if JSON file exists and read keypoints from JSONjson_path = os.path.join(params["write_json"], f"{str(args[0].camera)}.json")if os.path.exists(json_path):with open(json_path, 'r') as json_file:json_data = json.load(json_file)keypoints = json_data["people"][0]["pose_keypoints_2d"]print("Body keypoints from JSON: \n", keypoints)cv2.imshow("OpenPose 1.7.0 - Tutorial Python API", datum.cvOutputData)# Break the loop when 'q' is pressedif cv2.waitKey(1) & 0xFF == ord('q'):break# Release resources
cap.release()
cv2.destroyAllWindows()
opWrapper.stop()

结果:(要把摄像头打开哈,我就不打开了(●'◡'●))

然后会得到json文件夹:

 

这篇关于openpose之使用摄像头检测并输出到json文件的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/622730

相关文章

Qt之QMessageBox的具体使用

《Qt之QMessageBox的具体使用》本文介绍Qt中QMessageBox类的使用,用于弹出提示、警告、错误等模态对话框,具有一定的参考价值,感兴趣的可以了解一下... 目录1.引言2.简单介绍3.常见函数4.按钮类型(QMessage::StandardButton)5.分步骤实现弹窗6.总结1.引言

Python使用Reflex构建现代Web应用的完全指南

《Python使用Reflex构建现代Web应用的完全指南》这篇文章为大家深入介绍了Reflex框架的设计理念,技术特性,项目结构,核心API,实际开发流程以及与其他框架的对比和部署建议,感兴趣的小伙... 目录什么是 ReFlex?为什么选择 Reflex?安装与环境配置构建你的第一个应用核心概念解析组件

Qt中Qfile类的使用

《Qt中Qfile类的使用》很多应用程序都具备操作文件的能力,包括对文件进行写入和读取,创建和删除文件,本文主要介绍了Qt中Qfile类的使用,具有一定的参考价值,感兴趣的可以了解一下... 目录1.引言2.QFile文件操作3.演示示例3.1实验一3.2实验二【演示 QFile 读写二进制文件的过程】4.

spring security 超详细使用教程及如何接入springboot、前后端分离

《springsecurity超详细使用教程及如何接入springboot、前后端分离》SpringSecurity是一个强大且可扩展的框架,用于保护Java应用程序,尤其是基于Spring的应用... 目录1、准备工作1.1 引入依赖1.2 用户认证的配置1.3 基本的配置1.4 常用配置2、加密1. 密

WinForms中主要控件的详细使用教程

《WinForms中主要控件的详细使用教程》WinForms(WindowsForms)是Microsoft提供的用于构建Windows桌面应用程序的框架,它提供了丰富的控件集合,可以满足各种UI设计... 目录一、基础控件1. Button (按钮)2. Label (标签)3. TextBox (文本框

使用Vue-ECharts实现数据可视化图表功能

《使用Vue-ECharts实现数据可视化图表功能》在前端开发中,经常会遇到需要展示数据可视化的需求,比如柱状图、折线图、饼图等,这类需求不仅要求我们准确地将数据呈现出来,还需要兼顾美观与交互体验,所... 目录前言为什么选择 vue-ECharts?1. 基于 ECharts,功能强大2. 更符合 Vue

如何合理使用Spring的事务方式

《如何合理使用Spring的事务方式》:本文主要介绍如何合理使用Spring的事务方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、底层构造1.1.事务管理器1.2.事务定义信息1.3.事务状态1.4.联系1.2、特点1.3、原理2. Sprin

Vue中插槽slot的使用示例详解

《Vue中插槽slot的使用示例详解》:本文主要介绍Vue中插槽slot的使用示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、插槽是什么二、插槽分类2.1 匿名插槽2.2 具名插槽2.3 作用域插槽三、插槽的基本使用3.1 匿名插槽

使用WPF实现窗口抖动动画效果

《使用WPF实现窗口抖动动画效果》在用户界面设计中,适当的动画反馈可以提升用户体验,尤其是在错误提示、操作失败等场景下,窗口抖动作为一种常见且直观的视觉反馈方式,常用于提醒用户注意当前状态,本文将详细... 目录前言实现思路概述核心代码实现1、 获取目标窗口2、初始化基础位置值3、创建抖动动画4、动画完成后

PyQt5 QDate类的具体使用

《PyQt5QDate类的具体使用》QDate是PyQt5中处理日期的核心类,本文主要介绍了PyQt5QDate类的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录核心功能常用方法及代码示例​1. 创建日期对象​2. 获取日期信息​3. 日期计算与比较​4. 日