openpose之使用摄像头检测并输出到json文件

2024-01-19 14:36

本文主要是介绍openpose之使用摄像头检测并输出到json文件,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

编程如画,我是panda!


前言

之前给大家分享了如何搭建openpose环境,并进行了测试案例,但是如果要使用摄像头的话,还需要修改一下运行文件,并且这次会教大家如何输出到json文件 。

如果环境还没有搭建好,请参见我的博客:openpose环境搭建

一、了解输出格式

输出:

如果你使用一张图片进行测试,会得到一个n*25*3的矩阵, n代表检测到了几个人,25代表25个节点,3代表了(x坐标,y坐标,置信度)。

25个节点分别为:

// const std::map<unsigned int, std::string> POSE_BODY_25_BODY_PARTS {
//     {0,  "Nose"},
//     {1,  "Neck"},
//     {2,  "RShoulder"},
//     {3,  "RElbow"},
//     {4,  "RWrist"},
//     {5,  "LShoulder"},
//     {6,  "LElbow"},
//     {7,  "LWrist"},
//     {8,  "MidHip"},
//     {9,  "RHip"},
//     {10, "RKnee"},
//     {11, "RAnkle"},
//     {12, "LHip"},
//     {13, "LKnee"},
//     {14, "LAnkle"},
//     {15, "REye"},
//     {16, "LEye"},
//     {17, "REar"},
//     {18, "LEar"},
//     {19, "LBigToe"},
//     {20, "LSmallToe"},
//     {21, "LHeel"},
//     {22, "RBigToe"},
//     {23, "RSmallToe"},
//     {24, "RHeel"},
//     {25, "Background"}
// };

二、使用摄像头

openpose中有很多参数,可以使用参数来控制是否使用摄像头:

import os
import sys
import cv2
from sys import platform
import argparse
import numpy as npdir_path = os.path.dirname(os.path.realpath(__file__))
sys.path.append(dir_path)
os.environ['PATH'] = os.environ['PATH'] + ';' + dir_path + '/bin;'
import pyopenpose as opprint(op)
print("成功引入pyopenpose")parser = argparse.ArgumentParser()
parser.add_argument("--camera", default=0, help="Camera index for capturing video. Default is 0.")
args = parser.parse_known_args()# Custom Params
params = dict()
params["model_folder"] = "models/"
params["net_resolution"] = "368x256"# Starting OpenPose
opWrapper = op.WrapperPython()
opWrapper.configure(params)
opWrapper.start()# Start capturing from the camera
cap = cv2.VideoCapture(int(args[0].camera))while True:# Read a frame from the cameraret, frame = cap.read()if not ret:break# Process the framedatum = op.Datum()datum.cvInputData = frameopWrapper.emplaceAndPop(op.VectorDatum([datum]))# Display the resultprint("Body keypoints: \n" + str(datum.poseKeypoints))cv2.imshow("OpenPose 1.7.0 - Tutorial Python API", datum.cvOutputData)# Break the loop when 'q' is pressedif cv2.waitKey(1) & 0xFF == ord('q'):break# Release resources
cap.release()
cv2.destroyAllWindows()
opWrapper.stop()

如果你想输出到json文件,可以设置参数:

params["write_json"] = "json_output/"  # 指定保存 JSON 文件的目录

完整代码如下:

import os
import sys
import cv2
from sys import platform
import argparse
import json  # 添加 json 模块dir_path = os.path.dirname(os.path.realpath(__file__))
sys.path.append(dir_path)
os.environ['PATH'] = os.environ['PATH'] + ';' + dir_path + '/bin;'
import pyopenpose as opprint(op)
print("成功引入pyopenpose")parser = argparse.ArgumentParser()
parser.add_argument("--camera", default=0, help="Camera index for capturing video. Default is 0.")
args = parser.parse_known_args()# Custom Params
params = dict()
params["model_folder"] = "models/"
params["net_resolution"] = "368x256"
params["write_json"] = "json_output/"  # 指定保存 JSON 文件的目录# Starting OpenPose
opWrapper = op.WrapperPython()
opWrapper.configure(params)
opWrapper.start()# Start capturing from the camera
cap = cv2.VideoCapture(int(args[0].camera))while True:# Read a frame from the cameraret, frame = cap.read()if not ret:break# Process the framedatum = op.Datum()datum.cvInputData = frameopWrapper.emplaceAndPop(op.VectorDatum([datum]))# Display the resultprint("Body keypoints: \n" + str(datum.poseKeypoints))# Check if JSON file exists and read keypoints from JSONjson_path = os.path.join(params["write_json"], f"{str(args[0].camera)}.json")if os.path.exists(json_path):with open(json_path, 'r') as json_file:json_data = json.load(json_file)keypoints = json_data["people"][0]["pose_keypoints_2d"]print("Body keypoints from JSON: \n", keypoints)cv2.imshow("OpenPose 1.7.0 - Tutorial Python API", datum.cvOutputData)# Break the loop when 'q' is pressedif cv2.waitKey(1) & 0xFF == ord('q'):break# Release resources
cap.release()
cv2.destroyAllWindows()
opWrapper.stop()

结果:(要把摄像头打开哈,我就不打开了(●'◡'●))

然后会得到json文件夹:

 

这篇关于openpose之使用摄像头检测并输出到json文件的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/622730

相关文章

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

C#中Guid类使用小结

《C#中Guid类使用小结》本文主要介绍了C#中Guid类用于生成和操作128位的唯一标识符,用于数据库主键及分布式系统,支持通过NewGuid、Parse等方法生成,感兴趣的可以了解一下... 目录前言一、什么是 Guid二、生成 Guid1. 使用 Guid.NewGuid() 方法2. 从字符串创建

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注