布伦特方法(Brent‘s method)---结合二分法、割线法和逆二次插值法的求根方法

本文主要是介绍布伦特方法(Brent‘s method)---结合二分法、割线法和逆二次插值法的求根方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基础介绍:

给定给定区间\left [ a,b \right ],函数连续且f(a)\cdot f(b)<0,那么根据介值定理,函数必然在区间内有根。

  1. 二分法:将区间不断二分,使端点不断逼近零点。下一次迭代的区间为\left [ a,c \right ]\left [ c,b \right ],其中c=\frac{a+b}{2}
  2. 割线法(线性插值):基本思想是用弦的斜率近似代替目标函数的切线斜率,并用割线与横轴交点的横坐标作为方程式的根的近似。即给定两个点\left ( a,f(a) \right ),\left ( b,f(b) \right )。其割线方程为y=\frac{f(b)-f(a)}{b-a}\cdot (x-b)+f(b),那么令y=0,x的值即为下一次迭代的结果c=b-\frac{f(b)\cdot (b-a)}{f(b)-f(a)}
  3. 逆二次插值法:为割线法的进化版本。使用三个点确定一个二次函数,二次函数与横轴交错的点即为下次迭代的值。但是,其二次函数可能不会和横轴相交,因此做出一点改变,以y值作为自变量。给定三个点\left ( x_{i-2},f(x_{i-2}) \right ),(x_{i-1},f(x_{i-1})),(x_{i},f(x_{i})),则通过这三个点确定的二次函数为x=\frac{(y-f(x_{i-1}))(y-f(x_{i}))}{(f(x_{i-2})-f(x_{i-1}))(f(x_{i-2})-f(x_{i}))}\cdot x_{i-2}+\frac{(y-f(x_{i-2}))(y-f(x_{i-1}))}{(f({x_{i}})-f(x_{i-2}))(f(x_{i})-f(x_{i-1}))}\cdot x_{i}+\frac{(y-f(x_{i-2}))(y-f(x_{i}))}{(f(x_{i-1})-f(x_{i-2}))(f(x_{i-1})-f(x_{i}))}\cdot x_{i-1},令y=0,求得x_{i+1}=\frac{f(x_{i-1})f(x_{i})}{(f(x_{i-2})-f(x_{i-1}))(f(x_{i-2})-f(x_{i}))}\cdot x_{i-2}+\frac{f(x_{i-2})f(x_{i-1})}{(f({x_{i}})-f(x_{i-2}))(f(x_{i})-f(x_{i-1}))}\cdot x_{i}+\frac{f(x_{i-2})f(x_{i})}{(f(x_{i-1})-f(x_{i-2}))(f(x_{i-1})-f(x_{i}))}\cdot x_{i-1}

布伦特方法:

初始化区间(a_{0},b_{0})使得f(a_{0})\cdot f(b_{0})<0。其中b_{k}是上次迭代中的根估计值。如果\left | f(a_{0}) \right |<\left | f(b_{0}) \right |,那么赋值互换(我们认为对应函数值的绝对值较小的点更接近真正的根值)。

每次迭代包含四个点:

  1. b_{k}:为当前迭代的根估算值;
  2. a_{k}:对位点,即满足\left | f(a_{k}) \right |<\left | f(b_{k}) \right |f(a_{k})\cdot f(b_{k})<0的值。
  3. b_{k-1}:上一次迭代的根估算值,第一次迭代设置为b_{k-1}=a_{0}
  4. b_{k-2}:上上此迭代的根估算值(不用初始化,在首次迭代过程中,不会用到他来进行判断,结尾进行赋值)。

有以下四个不等式:

\left | \delta \right |<\left | b_{k}-b_{k-1} \right |  ①

\left | \delta \right |<\left | b_{k-1}-b_{k-2} \right |  ②

\left | s-b_{k} \right |<\frac{1}{2}\left | b_{k}-b_{k-1} \right |  ③

\left | s-b_{k} \right |<\frac{1}{2}\left | b_{k-1}-b_{k-2} \right | ④

上次迭代为二分法且①为假;上次迭代为二分法且③为假;上次迭代为插值法且②为假;上次迭代为插值法且④为假;以插值法计算的临时值不在\frac{3a_{k}+b{k}}{4}b_{k} 中间,以上五个条件满足一个,那么本次迭代的值采用二分法,否则采用插值法。

而插值法的选择如下:如果三点各不同,则用二次插值;否则用线性插值。

本次迭代的临时值s作为区间的一个端点,另一个端点在a_{k}b_{k}中选择,二者作为a_{k+1},b_{k+1},且满足f(a_{k+1})\cdot f(b_{k+1})<0,|f(a_{k+1})|>|f(b_{k+1})|

 

 

 

 

 

 

 

 

 

这篇关于布伦特方法(Brent‘s method)---结合二分法、割线法和逆二次插值法的求根方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/620269

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

SQL Server配置管理器无法打开的四种解决方法

《SQLServer配置管理器无法打开的四种解决方法》本文总结了SQLServer配置管理器无法打开的四种解决方法,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录方法一:桌面图标进入方法二:运行窗口进入检查版本号对照表php方法三:查找文件路径方法四:检查 S

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

golang中reflect包的常用方法

《golang中reflect包的常用方法》Go反射reflect包提供类型和值方法,用于获取类型信息、访问字段、调用方法等,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值... 目录reflect包方法总结类型 (Type) 方法值 (Value) 方法reflect包方法总结

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提