【机器学习】调配师:咖啡的完美预测

2024-01-18 08:36

本文主要是介绍【机器学习】调配师:咖啡的完美预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

有一天,小明带着一脸期待找到了你这位数据分析大师。他掏出手机,屏幕上展示着一份详尽的Excel表格。“看,这是我咖啡店过去一年的数据。”他滑动着屏幕,“每个月的销售量、广告投入,还有当月的气温,我都记录下来了。我总觉得这之间有关联,但我就是说不清楚。你能帮我找出其中的奥秘吗?”
在这里插入图片描述

你微微一笑,接过手机扫了一眼数据。“没问题,小明。这些数据就像咖啡店的DNA,隐藏着它的生命密码。而我们要做的,就是用线性回归这把钥匙,去解锁这些密码。”

你打了个响指,仿佛已经胸有成竹。“想象一下,这个线性回归模型就像一个智能咖啡师。它会根据过去的经验,也就是这些数据,来学习如何冲泡出一杯完美的‘预测销售额’。就像咖啡师会根据咖啡豆的种类、研磨的粗细、水温的高低来调整冲泡方法一样,我们的模型也会根据销售量、广告投入和气温来调整它的‘冲泡配方’,从而给出最准确的预测。”
在这里插入图片描述

小明的眼睛亮了起来,仿佛看到了新的希望。“那太棒了!这样一来,我就能提前知道哪些月份生意会火爆,哪些月份需要加大广告投入,还能提前规划好库存,避免浪费。”

你点了点头,表示赞同。“没错,这就是数据分析的魅力所在。它不仅能告诉你过去发生了什么,还能帮你预测未来会发生什么。这样一来,你就能做出更明智的决策,让你的咖啡店更上一层楼。”

说完,你迫不及待地打开电脑,准备开始构建这个神奇的线性回归模型。你知道,一旦模型构建成功,在这里插入图片描述
小明和他的咖啡店将迎来一个全新的时代。
在这里插入图片描述

在接下来的时间里,你和小明一起投身于数据的海洋中。你们清洗数据、构建特征、训练模型,每一步都充满了挑战和乐趣。

实际应用机器学习源代码

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error# 小明的咖啡店在过去一年里收集了详细的运营数据,包括每月的销售量(Sales)、广告投入(Advertising)、平均气温(Temperature)以及对应的月度销售额(Monthly_Revenue)
data = pd.read_csv('coffee_shop_data.csv', header=0)# 分离出影响销售额的特征变量和目标变量
X = data[['Sales', 'Advertising', 'Temperature']]  # 输入特征:销售量、广告投入、平均气温
y = data['Monthly_Revenue']  # 目标变量:月销售额# 按照80%训练集与20%测试集的比例划分数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 使用线性回归模型对咖啡店的销售额进行预测训练
revenue_predictor = LinearRegression()
revenue_predictor.fit(X_train, y_train)# 训练好的模型用于预测测试集上的销售额
predictions = revenue_predictor.predict(X_test)# 评估模型性能,计算均方误差(MSE)
mse = mean_squared_error(y_test, predictions)
print(f"模型在测试集上的均方误差(MSE)是: {mse:.2f}")# 输出模型参数,了解各特征对销售额的影响程度
print(f"Coefficients (销售量、广告投入、平均气温对月销售额的影响系数): {revenue_predictor.coef_}")
print(f"Intercept (截距,即当所有特征值为0时的预测销售额): {revenue_predictor.intercept_}")# 假设下个月预计有1500杯的销售量、500元的广告投入,以及20℃的平均气温
next_month_conditions = np.array([[1500, 500, 20]])
predicted_revenue_next_month = revenue_predictor.predict(next_month_conditions)
print(f"根据模型预测,下个月的预期销售额为: {round(predicted_revenue_next_month[0],3)}元")# 可视化分析 - 广告投入与实际月销售额的关系图
plt.figure(figsize=(10, 6))
plt.scatter(data['Advertising'], data['Monthly_Revenue'], color='blue', label='实际数据点')
plt.plot(data['Advertising'], revenue_predictor.predict(data[['Sales', 'Advertising', 'Temperature']]), color='red',label='拟合直线')
plt.xlabel('广告投入')
plt.ylabel('月销售额')
plt.title('广告投入与月销售额关系')
plt.legend()
plt.show()# 可视化分析 - 测试集中真实月销售额与预测月销售额的对比图
plt.figure(figsize=(10, 6))
plt.scatter(y_test, y_test, color='blue', label='实际测试数据点')
plt.scatter(y_test, predictions, color='red', label='预测数据点')
plt.xlabel('实际月销售额')
plt.ylabel('预测月销售额')
plt.title('实际与预测月销售额对比(测试集)')
plt.legend()
plt.show()# 注:在处理特征前,请确保已对不同尺度的特征进行了适当的预处理,如归一化或标准化,以提高模型的准确性。

完成这样预测的好处如下:

前瞻性决策:通过预测未来收入,咖啡店经理小明可以根据预测结果提前做出决策,比如调整库存、安排员工排班、制定营销策略等,以更好地适应预期的销售情况。

资源优化:根据预测收入,可以合理分配和控制成本。例如,在预测销售额较低时减少不必要的广告投入,或在预测销售额较高时增加原料储备,避免断货影响生意。

风险管理:预测有助于识别潜在的风险和机会。如果预测结果显示接下来的月收入可能下滑,小明就可以及时采取措施预防损失;反之,若预测收入增长,他则可抓住机遇进一步扩大市场。

绩效评估:实际收入与预测收入的对比分析可以帮助评估现有策略的效果,并据此改进业务模型。

计划与预算:基于预测数据,小明能够更准确地制定经营计划和财务预算,从而提高整体运营效率和盈利能力。
最终,当那个智能咖啡师——线性回归模型终于冲泡出第一杯“预测销售额”时,你们相视一笑,知道所有的付出都是值得的。

这篇关于【机器学习】调配师:咖啡的完美预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/618523

相关文章

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Node.js 数据库 CRUD 项目示例详解(完美解决方案)

《Node.js数据库CRUD项目示例详解(完美解决方案)》:本文主要介绍Node.js数据库CRUD项目示例详解(完美解决方案),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考... 目录项目结构1. 初始化项目2. 配置数据库连接 (config/db.js)3. 创建模型 (models/

电脑提示找不到openal32.dll文件怎么办? openal32.dll丢失完美修复方法

《电脑提示找不到openal32.dll文件怎么办?openal32.dll丢失完美修复方法》openal32.dll是一种重要的系统文件,当它丢失时,会给我们的电脑带来很大的困扰,很多人都曾经遇到... 在使用电脑过程中,我们常常会遇到一些.dll文件丢失的问题,而openal32.dll的丢失是其中比较

使用DrissionPage控制360浏览器的完美解决方案

《使用DrissionPage控制360浏览器的完美解决方案》在网页自动化领域,经常遇到需要保持登录状态、保留Cookie等场景,今天要分享的方案可以完美解决这个问题:使用DrissionPage直接... 目录完整代码引言为什么要使用已有用户数据?核心代码实现1. 导入必要模块2. 关键配置(重点!)3.

Python实现html转png的完美方案介绍

《Python实现html转png的完美方案介绍》这篇文章主要为大家详细介绍了如何使用Python实现html转png功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 1.增强稳定性与错误处理建议使用三层异常捕获结构:try: with sync_playwright(

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用