VC++中使用OpenCV对原图像中的四边形区域做透视变换

2024-01-17 14:52

本文主要是介绍VC++中使用OpenCV对原图像中的四边形区域做透视变换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

VC++中使用OpenCV对原图像中的四边形区域做透视变换

最近闲着跟着油管博主murtazahassan,学习了一下LEARN OPENCV C++ in 4 HOURS | Including 3x Projects | Computer Vision,对应的Github源代码地址为:Learn-OpenCV-cpp-in-4-Hours

视频里面讲到到原图中的扑克牌四个顶点标记画圆,并且将扑克牌K做透视变换后摆正重新显示,资源图像文件cards.png下载地址为:https://github.com/murtazahassan/Learn-OpenCV-cpp-in-4-Hours/tree/main/Resources
cards.png
cards.png

什么是透视变换

从名称中可以清楚地看出,透视变换与视点的变化相关。这种类型的转换不保留平行度、长度和角度。但它们确实保留了共线性和关联性。这意味着即使在变换之后直线仍将保持直线。

一般来说,透视变换可以表示为:
透视变换的数学形式
上面是透视变换的数学形式,说白了就是对图像中的某个区域做处理。
这里,(x’,y’)是变换点,而(x,y)是输入点。变换矩阵 (M) 可以看作是以下的组合:
透视变换点
对于仿射变换,投影向量等于0。因此,仿射变换可以被认为是透视变换的特例。

由于变换矩阵(M)由8个常数(自由度)定义,因此为了找到这个矩阵,我们首先在输入图像中选择4个点,然后根据用途将这4个点映射到未知输出图像中的所需位置-case(这样我们将有 8 个方程和 8 个未知数,并且可以很容易地求解)。

一旦计算出变换矩阵,我们就将透视变换应用于整个输入图像以获得最终的变换图像。让我们看看如何使用 OpenCV 来做到这一点。
对图形做透视变换

对扑克牌K做透视变换

OpenCV中的透视变换相关函数getPerspectiveTransformwarpPerspective

透视变换(Perspective Transformation)是将成像投影到一个新的视平面(Viewing Plane),也称作投影映射(Projective Mapping)。如图1,通过透视变换ABC变换到A’B’C’。透视变换是计算图像学和线性代数中的一个常用概念。
在视角转换中,我们可以改变给定图像或视频的视角,以便更好地洞察所需信息。在透视变换中,我们需要提供图像上想要通过改变透视来收集信息的点。我们还需要提供要在其中显示图像的点。然后,我们从给定的两组点获得透视变换并将其与原始图像包裹起来。

我们使用 getPerspectiveTransform, 然后使用 warpPerspective 函数,其中 getPerspectiveTransform它将 4 对对应点作为输入并输出变换矩阵,计算出变换矩阵 (M) 后,将其传递给 warpPerspective() 函数,该函数将透视变换应用于图像。

getPerspectiveTransform的函数有两种重载形式,其中一个函数原型如下:
getPerspectiveTransform函数原型1
getPerspectiveTransform重载函数原型2为:
getPerspectiveTransform函数原型2
warpPerspective 函数原型为:
warpPerspective函数原型

首先使用Windows电脑自带默认的画图工具打开cards.png原图,通过移动鼠标到扑克牌K的左上、右上、左下、右下角,在左下角即可查看图像某点的像素坐标,如下图所示:

卡片K的左上角坐标
可以看到K的左上角坐标为:{529, 144}
用同样的方法,依次获取K的右上、左下、右下角坐标,分别为:{771,190}、{405,395}、{674,457}

实现代码

1、根据原图,以及卡片K的位置,获取对应的透视变换矩阵
2、 对原图中的卡片K根据透视变化矩阵进行转换,得到目标图像imgWarp
3、在原图K的四个顶点位置处画一个圆,半径为10像素,颜色为红色
4、显示原图和目标图像K
我们要将扑克牌K进行透视变换摆正,类似下图的转换,以获得图像的自上而下的“鸟瞰图”。:
将某个四边形摆正,做透视变换

实现代码如下:

#include <opencv2/imgcodecs.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <iostream>using namespace cv;
using namespace std;///  Warp Images  //int main()
{string path = "Resources/cards.jpg";Mat img = imread(path);	// 读取原图Mat matrix, imgWarp;float w = 250, h = 350;	// 目标图像的宽度和高度Point2f src[4] = { {529,144},{771,190},{405,395},{674,457} };	// 扑克牌K的四个顶点坐标,分别为左上、右上、左下、右下角坐标Point2f dst[4] = { {0.0f,0.0f},{w,0.0f},{0.0f,h},{w,h} };		// 目标输出图像imgWarp的四个顶点坐标matrix = getPerspectiveTransform(src, dst);	// 根据原图和目标图,获取对应透视变换的转换矩阵warpPerspective(img, imgWarp, matrix, Point(w, h));	// 对原图中的卡片K根据透视变化矩阵进行转换,得到目标图像imgWarp// 在原图K的四个顶点位置处画一个圆,半径为10像素,颜色为红色for (int i = 0; i < 4; i++){circle(img, src[i], 10, Scalar(0, 0, 255), FILLED);}imshow("Image", img);			// 显示原图imshow("Image Warp", imgWarp);	// 显示目标图像KwaitKey(0); // 永久等待直到用户按下键盘中的键,则退出程序return 0;
}

运行结果

在VS2017中运行结果如下图所示:
显示卡片K

对原图中的扑克片K、J、9、Q依次做透视变化并输出

接下来,我们参照上面扑克牌K的处理方法,可以依次对原图中的扑克牌J、9、Q做类似的处理,代码如下图所示:

#include <opencv2/imgcodecs.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <iostream>using namespace cv;
using namespace std;///  Warp Images  //int main()
{string path = "Resources/cards.jpg";Mat img = imread(path);Mat matrix, imgWarpK;Mat matrixJ, imgWarpJ;Mat matrix9, imgWarp9;Mat matrixQ, imgWarpQ;float w = 250, h = 350;	// 目标卡片显示的宽度和高度// 1.处理卡片K// 分别对应扑克牌K的左上、右上、左下、右下角的坐标Point2f src[4] = { {529,144},{771,190},{405,395},{674,457} };	// 源图像中K卡片对应的四边形顶点的坐标。Point2f dst[4] = { {0.0f,0.0f},{w,0.0f},{0.0f,h},{w,h} };		// 目标图像中K卡片对应的四边形顶点的坐标。// 获取透视变换矩阵matrix = getPerspectiveTransform(src, dst);warpPerspective(img, imgWarpK, matrix, Point(w, h));// 在原图K的四个顶点处画圆for (int i = 0; i < 4; i++){circle(img, src[i], 10, Scalar(0, 0, 255), FILLED);}// 2.处理卡片J// 分别对应扑克牌J的左上、右上、左下、右下角的坐标Point2f srcOfJCard[4] = { {776, 108}, {1018, 85}, {849, 358}, {1116, 331} };Point2f destOfJCard[4] = { {0.0f, 0.0f}, {w, 0.0f}, {0.0f, h}, {w, h} };// 获取卡片J的透视变化矩阵matrixJ = getPerspectiveTransform(srcOfJCard, destOfJCard);warpPerspective(img, imgWarpJ, matrixJ, Point(w, h));// 在原图J的四个顶点画圆for (int i = 0; i < 4; i++) {circle(img, srcOfJCard[i], 10, Scalar(255, 0, 0), FILLED);}// 3.处理卡片9// 分别对应扑克牌9的左上、右上、左下、右下角的坐标Point2f srcOf9Card[4] = { {743, 383}, {1023, 438}, {646, 710}, {962, 781} };Point2f destOf9Card[4] = { {0.0f, 0.0f}, {w, 0.0f}, {0.0f, h}, {w, h} };// 获取卡片9的透视变化矩阵matrix9 = getPerspectiveTransform(srcOf9Card, destOf9Card);warpPerspective(img, imgWarp9, matrix9, Point(w, h));// 在原图9的四个顶点画圆for (int i = 0; i < 4; i++) {circle(img, srcOf9Card[i], 10, Scalar(0, 255, 0), FILLED);}// 4.处理卡片Q// 分别对应扑克牌Q的左上、右上、左下、右下角的坐标Point2f srcOfQCard[4] = { {64, 326}, {339, 279}, {91, 636}, {401, 573} };Point2f destOfQCard[4] = { {0.0f, 0.0f}, {w, 0.0f}, {0.0f, h}, {w, h} };// 获取卡片Q的透视变化矩阵matrixQ = getPerspectiveTransform(srcOfQCard, destOfQCard);warpPerspective(img, imgWarpQ, matrixQ, Point(w, h));// 在原图Q的四个顶点画圆for (int i = 0; i < 4; i++) {circle(img, srcOfQCard[i], 10, Scalar(0, 255, 0), FILLED);}imshow("Image", img);			// 显示原图imshow("Warp K", imgWarpK);		// 显示经透视变化后的卡片K,宽度为250,高度为350imshow("Warp J", imgWarpJ);		// 显示经透视变化后的卡片J,宽度为250,高度为350imshow("Warp 9", imgWarp9);		// 显示经透视变化后的卡片9,宽度为250,高度为350imshow("Warp Q", imgWarpQ);     // 显示经透视变化后的卡片Q,宽度为250,高度为350waitKey(0);	// 无限期的等待键盘输入return 0;
}

对应的运行结果如下图所示:
对4个卡片做透视变换

参考资料

  • Perspective Transformation – Python OpenCV
  • TAG ARCHIVES: CV2.GETPERSPECTIVETRANSFORM()
  • LEARN OPENCV C++ in 4 HOURS | Including 3x Projects | Computer Vision
  • murtazahassan/Learn-OpenCV-cpp-in-4-Hours
  • OpenCV官网
  • OpenCV-Get Started
  • OpenCV Github仓库源代码
  • OpenCV tutorial
  • Warp Images
  • https://docs.opencv.org/4.x/da/d54/group__imgproc__transform.html

这篇关于VC++中使用OpenCV对原图像中的四边形区域做透视变换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/616391

相关文章

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

nginx启动命令和默认配置文件的使用

《nginx启动命令和默认配置文件的使用》:本文主要介绍nginx启动命令和默认配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录常见命令nginx.conf配置文件location匹配规则图片服务器总结常见命令# 默认配置文件启动./nginx

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安